Metamath Proof Explorer
Description: A version of scott0f with inequalities instead of equalities.
(Contributed by Giovanni Mascellani, 19-Aug-2018)
|
|
Ref |
Expression |
|
Hypotheses |
scottn0f.1 |
⊢ Ⅎ 𝑦 𝐴 |
|
|
scottn0f.2 |
⊢ Ⅎ 𝑥 𝐴 |
|
Assertion |
scottn0f |
⊢ ( 𝐴 ≠ ∅ ↔ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ≠ ∅ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
scottn0f.1 |
⊢ Ⅎ 𝑦 𝐴 |
2 |
|
scottn0f.2 |
⊢ Ⅎ 𝑥 𝐴 |
3 |
1 2
|
scott0f |
⊢ ( 𝐴 = ∅ ↔ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } = ∅ ) |
4 |
3
|
necon3bii |
⊢ ( 𝐴 ≠ ∅ ↔ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ≠ ∅ ) |