Metamath Proof Explorer


Theorem scottn0f

Description: A version of scott0f with inequalities instead of equalities. (Contributed by Giovanni Mascellani, 19-Aug-2018)

Ref Expression
Hypotheses scottn0f.1 𝑦 𝐴
scottn0f.2 𝑥 𝐴
Assertion scottn0f ( 𝐴 ≠ ∅ ↔ { 𝑥𝐴 ∣ ∀ 𝑦𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ≠ ∅ )

Proof

Step Hyp Ref Expression
1 scottn0f.1 𝑦 𝐴
2 scottn0f.2 𝑥 𝐴
3 1 2 scott0f ( 𝐴 = ∅ ↔ { 𝑥𝐴 ∣ ∀ 𝑦𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } = ∅ )
4 3 necon3bii ( 𝐴 ≠ ∅ ↔ { 𝑥𝐴 ∣ ∀ 𝑦𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ≠ ∅ )