Metamath Proof Explorer


Theorem scott0f

Description: A version of scott0 with nonfree variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018)

Ref Expression
Hypotheses scott0f.1 𝑦 𝐴
scott0f.2 𝑥 𝐴
Assertion scott0f ( 𝐴 = ∅ ↔ { 𝑥𝐴 ∣ ∀ 𝑦𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } = ∅ )

Proof

Step Hyp Ref Expression
1 scott0f.1 𝑦 𝐴
2 scott0f.2 𝑥 𝐴
3 scott0 ( 𝐴 = ∅ ↔ { 𝑤𝐴 ∣ ∀ 𝑧𝐴 ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑧 ) } = ∅ )
4 nfcv 𝑧 𝐴
5 nfv 𝑧 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 )
6 nfv 𝑦 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑧 )
7 fveq2 ( 𝑦 = 𝑧 → ( rank ‘ 𝑦 ) = ( rank ‘ 𝑧 ) )
8 7 sseq2d ( 𝑦 = 𝑧 → ( ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ↔ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑧 ) ) )
9 1 4 5 6 8 cbvralfw ( ∀ 𝑦𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ↔ ∀ 𝑧𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑧 ) )
10 9 rabbii { 𝑥𝐴 ∣ ∀ 𝑦𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } = { 𝑥𝐴 ∣ ∀ 𝑧𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑧 ) }
11 nfcv 𝑤 𝐴
12 nfv 𝑥 ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑧 )
13 2 12 nfralw 𝑥𝑧𝐴 ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑧 )
14 nfv 𝑤𝑧𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑧 )
15 fveq2 ( 𝑤 = 𝑥 → ( rank ‘ 𝑤 ) = ( rank ‘ 𝑥 ) )
16 15 sseq1d ( 𝑤 = 𝑥 → ( ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑧 ) ↔ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑧 ) ) )
17 16 ralbidv ( 𝑤 = 𝑥 → ( ∀ 𝑧𝐴 ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑧 ) ↔ ∀ 𝑧𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑧 ) ) )
18 11 2 13 14 17 cbvrabw { 𝑤𝐴 ∣ ∀ 𝑧𝐴 ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑧 ) } = { 𝑥𝐴 ∣ ∀ 𝑧𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑧 ) }
19 10 18 eqtr4i { 𝑥𝐴 ∣ ∀ 𝑦𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } = { 𝑤𝐴 ∣ ∀ 𝑧𝐴 ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑧 ) }
20 19 eqeq1i ( { 𝑥𝐴 ∣ ∀ 𝑦𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } = ∅ ↔ { 𝑤𝐴 ∣ ∀ 𝑧𝐴 ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑧 ) } = ∅ )
21 3 20 bitr4i ( 𝐴 = ∅ ↔ { 𝑥𝐴 ∣ ∀ 𝑦𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } = ∅ )