Metamath Proof Explorer


Theorem scott0f

Description: A version of scott0 with nonfree variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018)

Ref Expression
Hypotheses scott0f.1 _yA
scott0f.2 _xA
Assertion scott0f A=xA|yArankxranky=

Proof

Step Hyp Ref Expression
1 scott0f.1 _yA
2 scott0f.2 _xA
3 scott0 A=wA|zArankwrankz=
4 nfcv _zA
5 nfv zrankxranky
6 nfv yrankxrankz
7 fveq2 y=zranky=rankz
8 7 sseq2d y=zrankxrankyrankxrankz
9 1 4 5 6 8 cbvralfw yArankxrankyzArankxrankz
10 9 rabbii xA|yArankxranky=xA|zArankxrankz
11 nfcv _wA
12 nfv xrankwrankz
13 2 12 nfralw xzArankwrankz
14 nfv wzArankxrankz
15 fveq2 w=xrankw=rankx
16 15 sseq1d w=xrankwrankzrankxrankz
17 16 ralbidv w=xzArankwrankzzArankxrankz
18 11 2 13 14 17 cbvrabw wA|zArankwrankz=xA|zArankxrankz
19 10 18 eqtr4i xA|yArankxranky=wA|zArankwrankz
20 19 eqeq1i xA|yArankxranky=wA|zArankwrankz=
21 3 20 bitr4i A=xA|yArankxranky=