Metamath Proof Explorer


Theorem scott0f

Description: A version of scott0 with nonfree variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018)

Ref Expression
Hypotheses scott0f.1 _ y A
scott0f.2 _ x A
Assertion scott0f A = x A | y A rank x rank y =

Proof

Step Hyp Ref Expression
1 scott0f.1 _ y A
2 scott0f.2 _ x A
3 scott0 A = w A | z A rank w rank z =
4 nfcv _ z A
5 nfv z rank x rank y
6 nfv y rank x rank z
7 fveq2 y = z rank y = rank z
8 7 sseq2d y = z rank x rank y rank x rank z
9 1 4 5 6 8 cbvralfw y A rank x rank y z A rank x rank z
10 9 rabbii x A | y A rank x rank y = x A | z A rank x rank z
11 nfcv _ w A
12 nfv x rank w rank z
13 2 12 nfralw x z A rank w rank z
14 nfv w z A rank x rank z
15 fveq2 w = x rank w = rank x
16 15 sseq1d w = x rank w rank z rank x rank z
17 16 ralbidv w = x z A rank w rank z z A rank x rank z
18 11 2 13 14 17 cbvrabw w A | z A rank w rank z = x A | z A rank x rank z
19 10 18 eqtr4i x A | y A rank x rank y = w A | z A rank w rank z
20 19 eqeq1i x A | y A rank x rank y = w A | z A rank w rank z =
21 3 20 bitr4i A = x A | y A rank x rank y =