Metamath Proof Explorer


Theorem scott0f

Description: A version of scott0 with nonfree variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018)

Ref Expression
Hypotheses scott0f.1
|- F/_ y A
scott0f.2
|- F/_ x A
Assertion scott0f
|- ( A = (/) <-> { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = (/) )

Proof

Step Hyp Ref Expression
1 scott0f.1
 |-  F/_ y A
2 scott0f.2
 |-  F/_ x A
3 scott0
 |-  ( A = (/) <-> { w e. A | A. z e. A ( rank ` w ) C_ ( rank ` z ) } = (/) )
4 nfcv
 |-  F/_ z A
5 nfv
 |-  F/ z ( rank ` x ) C_ ( rank ` y )
6 nfv
 |-  F/ y ( rank ` x ) C_ ( rank ` z )
7 fveq2
 |-  ( y = z -> ( rank ` y ) = ( rank ` z ) )
8 7 sseq2d
 |-  ( y = z -> ( ( rank ` x ) C_ ( rank ` y ) <-> ( rank ` x ) C_ ( rank ` z ) ) )
9 1 4 5 6 8 cbvralfw
 |-  ( A. y e. A ( rank ` x ) C_ ( rank ` y ) <-> A. z e. A ( rank ` x ) C_ ( rank ` z ) )
10 9 rabbii
 |-  { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = { x e. A | A. z e. A ( rank ` x ) C_ ( rank ` z ) }
11 nfcv
 |-  F/_ w A
12 nfv
 |-  F/ x ( rank ` w ) C_ ( rank ` z )
13 2 12 nfralw
 |-  F/ x A. z e. A ( rank ` w ) C_ ( rank ` z )
14 nfv
 |-  F/ w A. z e. A ( rank ` x ) C_ ( rank ` z )
15 fveq2
 |-  ( w = x -> ( rank ` w ) = ( rank ` x ) )
16 15 sseq1d
 |-  ( w = x -> ( ( rank ` w ) C_ ( rank ` z ) <-> ( rank ` x ) C_ ( rank ` z ) ) )
17 16 ralbidv
 |-  ( w = x -> ( A. z e. A ( rank ` w ) C_ ( rank ` z ) <-> A. z e. A ( rank ` x ) C_ ( rank ` z ) ) )
18 11 2 13 14 17 cbvrabw
 |-  { w e. A | A. z e. A ( rank ` w ) C_ ( rank ` z ) } = { x e. A | A. z e. A ( rank ` x ) C_ ( rank ` z ) }
19 10 18 eqtr4i
 |-  { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = { w e. A | A. z e. A ( rank ` w ) C_ ( rank ` z ) }
20 19 eqeq1i
 |-  ( { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = (/) <-> { w e. A | A. z e. A ( rank ` w ) C_ ( rank ` z ) } = (/) )
21 3 20 bitr4i
 |-  ( A = (/) <-> { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = (/) )