Metamath Proof Explorer


Theorem scottn0f

Description: A version of scott0f with inequalities instead of equalities. (Contributed by Giovanni Mascellani, 19-Aug-2018)

Ref Expression
Hypotheses scottn0f.1 _yA
scottn0f.2 _xA
Assertion scottn0f AxA|yArankxranky

Proof

Step Hyp Ref Expression
1 scottn0f.1 _yA
2 scottn0f.2 _xA
3 1 2 scott0f A=xA|yArankxranky=
4 3 necon3bii AxA|yArankxranky