Metamath Proof Explorer


Theorem scottn0f

Description: A version of scott0f with inequalities instead of equalities. (Contributed by Giovanni Mascellani, 19-Aug-2018)

Ref Expression
Hypotheses scottn0f.1 _ y A
scottn0f.2 _ x A
Assertion scottn0f A x A | y A rank x rank y

Proof

Step Hyp Ref Expression
1 scottn0f.1 _ y A
2 scottn0f.2 _ x A
3 1 2 scott0f A = x A | y A rank x rank y =
4 3 necon3bii A x A | y A rank x rank y