| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sepnsepolem2.1 |
|- ( ph -> J e. Top ) |
| 2 |
|
id |
|- ( J e. Top -> J e. Top ) |
| 3 |
|
sslin |
|- ( z C_ y -> ( x i^i z ) C_ ( x i^i y ) ) |
| 4 |
|
sseq0 |
|- ( ( ( x i^i z ) C_ ( x i^i y ) /\ ( x i^i y ) = (/) ) -> ( x i^i z ) = (/) ) |
| 5 |
4
|
ex |
|- ( ( x i^i z ) C_ ( x i^i y ) -> ( ( x i^i y ) = (/) -> ( x i^i z ) = (/) ) ) |
| 6 |
3 5
|
syl |
|- ( z C_ y -> ( ( x i^i y ) = (/) -> ( x i^i z ) = (/) ) ) |
| 7 |
6
|
adantl |
|- ( ( J e. Top /\ z C_ y ) -> ( ( x i^i y ) = (/) -> ( x i^i z ) = (/) ) ) |
| 8 |
|
ineq2 |
|- ( y = z -> ( x i^i y ) = ( x i^i z ) ) |
| 9 |
8
|
eqeq1d |
|- ( y = z -> ( ( x i^i y ) = (/) <-> ( x i^i z ) = (/) ) ) |
| 10 |
9
|
adantl |
|- ( ( J e. Top /\ y = z ) -> ( ( x i^i y ) = (/) <-> ( x i^i z ) = (/) ) ) |
| 11 |
2 7 10
|
opnneieqv |
|- ( J e. Top -> ( E. y e. ( ( nei ` J ) ` D ) ( x i^i y ) = (/) <-> E. y e. J ( D C_ y /\ ( x i^i y ) = (/) ) ) ) |
| 12 |
1 11
|
syl |
|- ( ph -> ( E. y e. ( ( nei ` J ) ` D ) ( x i^i y ) = (/) <-> E. y e. J ( D C_ y /\ ( x i^i y ) = (/) ) ) ) |