Metamath Proof Explorer


Theorem sepnsepolem2

Description: Open neighborhood and neighborhood is equivalent regarding disjointness. Lemma for sepnsepo . Proof could be shortened by 1 step using ssdisjdr . (Contributed by Zhi Wang, 1-Sep-2024)

Ref Expression
Hypothesis sepnsepolem2.1
|- ( ph -> J e. Top )
Assertion sepnsepolem2
|- ( ph -> ( E. y e. ( ( nei ` J ) ` D ) ( x i^i y ) = (/) <-> E. y e. J ( D C_ y /\ ( x i^i y ) = (/) ) ) )

Proof

Step Hyp Ref Expression
1 sepnsepolem2.1
 |-  ( ph -> J e. Top )
2 id
 |-  ( J e. Top -> J e. Top )
3 sslin
 |-  ( z C_ y -> ( x i^i z ) C_ ( x i^i y ) )
4 sseq0
 |-  ( ( ( x i^i z ) C_ ( x i^i y ) /\ ( x i^i y ) = (/) ) -> ( x i^i z ) = (/) )
5 4 ex
 |-  ( ( x i^i z ) C_ ( x i^i y ) -> ( ( x i^i y ) = (/) -> ( x i^i z ) = (/) ) )
6 3 5 syl
 |-  ( z C_ y -> ( ( x i^i y ) = (/) -> ( x i^i z ) = (/) ) )
7 6 adantl
 |-  ( ( J e. Top /\ z C_ y ) -> ( ( x i^i y ) = (/) -> ( x i^i z ) = (/) ) )
8 ineq2
 |-  ( y = z -> ( x i^i y ) = ( x i^i z ) )
9 8 eqeq1d
 |-  ( y = z -> ( ( x i^i y ) = (/) <-> ( x i^i z ) = (/) ) )
10 9 adantl
 |-  ( ( J e. Top /\ y = z ) -> ( ( x i^i y ) = (/) <-> ( x i^i z ) = (/) ) )
11 2 7 10 opnneieqv
 |-  ( J e. Top -> ( E. y e. ( ( nei ` J ) ` D ) ( x i^i y ) = (/) <-> E. y e. J ( D C_ y /\ ( x i^i y ) = (/) ) ) )
12 1 11 syl
 |-  ( ph -> ( E. y e. ( ( nei ` J ) ` D ) ( x i^i y ) = (/) <-> E. y e. J ( D C_ y /\ ( x i^i y ) = (/) ) ) )