| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sepnsepolem2.1 |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 2 |
|
id |
⊢ ( 𝐽 ∈ Top → 𝐽 ∈ Top ) |
| 3 |
|
sslin |
⊢ ( 𝑧 ⊆ 𝑦 → ( 𝑥 ∩ 𝑧 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 4 |
|
sseq0 |
⊢ ( ( ( 𝑥 ∩ 𝑧 ) ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∩ 𝑧 ) = ∅ ) |
| 5 |
4
|
ex |
⊢ ( ( 𝑥 ∩ 𝑧 ) ⊆ ( 𝑥 ∩ 𝑦 ) → ( ( 𝑥 ∩ 𝑦 ) = ∅ → ( 𝑥 ∩ 𝑧 ) = ∅ ) ) |
| 6 |
3 5
|
syl |
⊢ ( 𝑧 ⊆ 𝑦 → ( ( 𝑥 ∩ 𝑦 ) = ∅ → ( 𝑥 ∩ 𝑧 ) = ∅ ) ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑧 ⊆ 𝑦 ) → ( ( 𝑥 ∩ 𝑦 ) = ∅ → ( 𝑥 ∩ 𝑧 ) = ∅ ) ) |
| 8 |
|
ineq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 ∩ 𝑦 ) = ( 𝑥 ∩ 𝑧 ) ) |
| 9 |
8
|
eqeq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 ∩ 𝑦 ) = ∅ ↔ ( 𝑥 ∩ 𝑧 ) = ∅ ) ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 = 𝑧 ) → ( ( 𝑥 ∩ 𝑦 ) = ∅ ↔ ( 𝑥 ∩ 𝑧 ) = ∅ ) ) |
| 11 |
2 7 10
|
opnneieqv |
⊢ ( 𝐽 ∈ Top → ( ∃ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐷 ) ( 𝑥 ∩ 𝑦 ) = ∅ ↔ ∃ 𝑦 ∈ 𝐽 ( 𝐷 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) |
| 12 |
1 11
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐷 ) ( 𝑥 ∩ 𝑦 ) = ∅ ↔ ∃ 𝑦 ∈ 𝐽 ( 𝐷 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) |