Metamath Proof Explorer


Theorem sepnsepolem2

Description: Open neighborhood and neighborhood is equivalent regarding disjointness. Lemma for sepnsepo . Proof could be shortened by 1 step using ssdisjdr . (Contributed by Zhi Wang, 1-Sep-2024)

Ref Expression
Hypothesis sepnsepolem2.1 ( 𝜑𝐽 ∈ Top )
Assertion sepnsepolem2 ( 𝜑 → ( ∃ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐷 ) ( 𝑥𝑦 ) = ∅ ↔ ∃ 𝑦𝐽 ( 𝐷𝑦 ∧ ( 𝑥𝑦 ) = ∅ ) ) )

Proof

Step Hyp Ref Expression
1 sepnsepolem2.1 ( 𝜑𝐽 ∈ Top )
2 id ( 𝐽 ∈ Top → 𝐽 ∈ Top )
3 sslin ( 𝑧𝑦 → ( 𝑥𝑧 ) ⊆ ( 𝑥𝑦 ) )
4 sseq0 ( ( ( 𝑥𝑧 ) ⊆ ( 𝑥𝑦 ) ∧ ( 𝑥𝑦 ) = ∅ ) → ( 𝑥𝑧 ) = ∅ )
5 4 ex ( ( 𝑥𝑧 ) ⊆ ( 𝑥𝑦 ) → ( ( 𝑥𝑦 ) = ∅ → ( 𝑥𝑧 ) = ∅ ) )
6 3 5 syl ( 𝑧𝑦 → ( ( 𝑥𝑦 ) = ∅ → ( 𝑥𝑧 ) = ∅ ) )
7 6 adantl ( ( 𝐽 ∈ Top ∧ 𝑧𝑦 ) → ( ( 𝑥𝑦 ) = ∅ → ( 𝑥𝑧 ) = ∅ ) )
8 ineq2 ( 𝑦 = 𝑧 → ( 𝑥𝑦 ) = ( 𝑥𝑧 ) )
9 8 eqeq1d ( 𝑦 = 𝑧 → ( ( 𝑥𝑦 ) = ∅ ↔ ( 𝑥𝑧 ) = ∅ ) )
10 9 adantl ( ( 𝐽 ∈ Top ∧ 𝑦 = 𝑧 ) → ( ( 𝑥𝑦 ) = ∅ ↔ ( 𝑥𝑧 ) = ∅ ) )
11 2 7 10 opnneieqv ( 𝐽 ∈ Top → ( ∃ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐷 ) ( 𝑥𝑦 ) = ∅ ↔ ∃ 𝑦𝐽 ( 𝐷𝑦 ∧ ( 𝑥𝑦 ) = ∅ ) ) )
12 1 11 syl ( 𝜑 → ( ∃ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐷 ) ( 𝑥𝑦 ) = ∅ ↔ ∃ 𝑦𝐽 ( 𝐷𝑦 ∧ ( 𝑥𝑦 ) = ∅ ) ) )