Metamath Proof Explorer


Theorem setsv

Description: The value of the structure replacement function is a set. (Contributed by AV, 10-Nov-2021)

Ref Expression
Assertion setsv
|- ( ( S e. V /\ B e. W ) -> ( S sSet <. A , B >. ) e. _V )

Proof

Step Hyp Ref Expression
1 setsval
 |-  ( ( S e. V /\ B e. W ) -> ( S sSet <. A , B >. ) = ( ( S |` ( _V \ { A } ) ) u. { <. A , B >. } ) )
2 resexg
 |-  ( S e. V -> ( S |` ( _V \ { A } ) ) e. _V )
3 snex
 |-  { <. A , B >. } e. _V
4 3 a1i
 |-  ( ( S e. V /\ B e. W ) -> { <. A , B >. } e. _V )
5 unexg
 |-  ( ( ( S |` ( _V \ { A } ) ) e. _V /\ { <. A , B >. } e. _V ) -> ( ( S |` ( _V \ { A } ) ) u. { <. A , B >. } ) e. _V )
6 2 4 5 syl2an2r
 |-  ( ( S e. V /\ B e. W ) -> ( ( S |` ( _V \ { A } ) ) u. { <. A , B >. } ) e. _V )
7 1 6 eqeltrd
 |-  ( ( S e. V /\ B e. W ) -> ( S sSet <. A , B >. ) e. _V )