Metamath Proof Explorer


Theorem setsv

Description: The value of the structure replacement function is a set. (Contributed by AV, 10-Nov-2021)

Ref Expression
Assertion setsv ( ( 𝑆𝑉𝐵𝑊 ) → ( 𝑆 sSet ⟨ 𝐴 , 𝐵 ⟩ ) ∈ V )

Proof

Step Hyp Ref Expression
1 setsval ( ( 𝑆𝑉𝐵𝑊 ) → ( 𝑆 sSet ⟨ 𝐴 , 𝐵 ⟩ ) = ( ( 𝑆 ↾ ( V ∖ { 𝐴 } ) ) ∪ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
2 resexg ( 𝑆𝑉 → ( 𝑆 ↾ ( V ∖ { 𝐴 } ) ) ∈ V )
3 snex { ⟨ 𝐴 , 𝐵 ⟩ } ∈ V
4 3 a1i ( ( 𝑆𝑉𝐵𝑊 ) → { ⟨ 𝐴 , 𝐵 ⟩ } ∈ V )
5 unexg ( ( ( 𝑆 ↾ ( V ∖ { 𝐴 } ) ) ∈ V ∧ { ⟨ 𝐴 , 𝐵 ⟩ } ∈ V ) → ( ( 𝑆 ↾ ( V ∖ { 𝐴 } ) ) ∪ { ⟨ 𝐴 , 𝐵 ⟩ } ) ∈ V )
6 2 4 5 syl2an2r ( ( 𝑆𝑉𝐵𝑊 ) → ( ( 𝑆 ↾ ( V ∖ { 𝐴 } ) ) ∪ { ⟨ 𝐴 , 𝐵 ⟩ } ) ∈ V )
7 1 6 eqeltrd ( ( 𝑆𝑉𝐵𝑊 ) → ( 𝑆 sSet ⟨ 𝐴 , 𝐵 ⟩ ) ∈ V )