Metamath Proof Explorer


Theorem setsv

Description: The value of the structure replacement function is a set. (Contributed by AV, 10-Nov-2021)

Ref Expression
Assertion setsv S V B W S sSet A B V

Proof

Step Hyp Ref Expression
1 setsval S V B W S sSet A B = S V A A B
2 resexg S V S V A V
3 snex A B V
4 3 a1i S V B W A B V
5 unexg S V A V A B V S V A A B V
6 2 4 5 syl2an2r S V B W S V A A B V
7 1 6 eqeltrd S V B W S sSet A B V