| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shftfval.1 |  |-  F e. _V | 
						
							| 2 |  | subcl |  |-  ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) | 
						
							| 3 | 2 | 3adant3 |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - B ) e. CC ) | 
						
							| 4 |  | addcl |  |-  ( ( A e. CC /\ C e. CC ) -> ( A + C ) e. CC ) | 
						
							| 5 | 1 | shftval |  |-  ( ( ( A - B ) e. CC /\ ( A + C ) e. CC ) -> ( ( F shift ( A - B ) ) ` ( A + C ) ) = ( F ` ( ( A + C ) - ( A - B ) ) ) ) | 
						
							| 6 | 3 4 5 | 3imp3i2an |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( F shift ( A - B ) ) ` ( A + C ) ) = ( F ` ( ( A + C ) - ( A - B ) ) ) ) | 
						
							| 7 |  | pnncan |  |-  ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( ( A + C ) - ( A - B ) ) = ( C + B ) ) | 
						
							| 8 | 7 | 3com23 |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + C ) - ( A - B ) ) = ( C + B ) ) | 
						
							| 9 |  | addcom |  |-  ( ( B e. CC /\ C e. CC ) -> ( B + C ) = ( C + B ) ) | 
						
							| 10 | 9 | 3adant1 |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B + C ) = ( C + B ) ) | 
						
							| 11 | 8 10 | eqtr4d |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + C ) - ( A - B ) ) = ( B + C ) ) | 
						
							| 12 | 11 | fveq2d |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( F ` ( ( A + C ) - ( A - B ) ) ) = ( F ` ( B + C ) ) ) | 
						
							| 13 | 6 12 | eqtrd |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( F shift ( A - B ) ) ` ( A + C ) ) = ( F ` ( B + C ) ) ) |