| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shftfval.1 |  |-  F e. _V | 
						
							| 2 |  | 0cn |  |-  0 e. CC | 
						
							| 3 | 1 | shftval2 |  |-  ( ( A e. CC /\ B e. CC /\ 0 e. CC ) -> ( ( F shift ( A - B ) ) ` ( A + 0 ) ) = ( F ` ( B + 0 ) ) ) | 
						
							| 4 | 2 3 | mp3an3 |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( F shift ( A - B ) ) ` ( A + 0 ) ) = ( F ` ( B + 0 ) ) ) | 
						
							| 5 |  | addrid |  |-  ( A e. CC -> ( A + 0 ) = A ) | 
						
							| 6 | 5 | adantr |  |-  ( ( A e. CC /\ B e. CC ) -> ( A + 0 ) = A ) | 
						
							| 7 | 6 | fveq2d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( F shift ( A - B ) ) ` ( A + 0 ) ) = ( ( F shift ( A - B ) ) ` A ) ) | 
						
							| 8 |  | addrid |  |-  ( B e. CC -> ( B + 0 ) = B ) | 
						
							| 9 | 8 | adantl |  |-  ( ( A e. CC /\ B e. CC ) -> ( B + 0 ) = B ) | 
						
							| 10 | 9 | fveq2d |  |-  ( ( A e. CC /\ B e. CC ) -> ( F ` ( B + 0 ) ) = ( F ` B ) ) | 
						
							| 11 | 4 7 10 | 3eqtr3d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( F shift ( A - B ) ) ` A ) = ( F ` B ) ) |