| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shftfval.1 | ⊢ 𝐹  ∈  V | 
						
							| 2 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 3 | 1 | shftval2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  0  ∈  ℂ )  →  ( ( 𝐹  shift  ( 𝐴  −  𝐵 ) ) ‘ ( 𝐴  +  0 ) )  =  ( 𝐹 ‘ ( 𝐵  +  0 ) ) ) | 
						
							| 4 | 2 3 | mp3an3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐹  shift  ( 𝐴  −  𝐵 ) ) ‘ ( 𝐴  +  0 ) )  =  ( 𝐹 ‘ ( 𝐵  +  0 ) ) ) | 
						
							| 5 |  | addrid | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  +  0 )  =  𝐴 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  +  0 )  =  𝐴 ) | 
						
							| 7 | 6 | fveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐹  shift  ( 𝐴  −  𝐵 ) ) ‘ ( 𝐴  +  0 ) )  =  ( ( 𝐹  shift  ( 𝐴  −  𝐵 ) ) ‘ 𝐴 ) ) | 
						
							| 8 |  | addrid | ⊢ ( 𝐵  ∈  ℂ  →  ( 𝐵  +  0 )  =  𝐵 ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐵  +  0 )  =  𝐵 ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐹 ‘ ( 𝐵  +  0 ) )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 11 | 4 7 10 | 3eqtr3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐹  shift  ( 𝐴  −  𝐵 ) ) ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐵 ) ) |