| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shftfval.1 | ⊢ 𝐹  ∈  V | 
						
							| 2 |  | subcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  −  𝐵 )  ∈  ℂ ) | 
						
							| 3 | 2 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴  −  𝐵 )  ∈  ℂ ) | 
						
							| 4 |  | addcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴  +  𝐶 )  ∈  ℂ ) | 
						
							| 5 | 1 | shftval | ⊢ ( ( ( 𝐴  −  𝐵 )  ∈  ℂ  ∧  ( 𝐴  +  𝐶 )  ∈  ℂ )  →  ( ( 𝐹  shift  ( 𝐴  −  𝐵 ) ) ‘ ( 𝐴  +  𝐶 ) )  =  ( 𝐹 ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐴  −  𝐵 ) ) ) ) | 
						
							| 6 | 3 4 5 | 3imp3i2an | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐹  shift  ( 𝐴  −  𝐵 ) ) ‘ ( 𝐴  +  𝐶 ) )  =  ( 𝐹 ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐴  −  𝐵 ) ) ) ) | 
						
							| 7 |  | pnncan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐶  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐴  +  𝐶 )  −  ( 𝐴  −  𝐵 ) )  =  ( 𝐶  +  𝐵 ) ) | 
						
							| 8 | 7 | 3com23 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐴  +  𝐶 )  −  ( 𝐴  −  𝐵 ) )  =  ( 𝐶  +  𝐵 ) ) | 
						
							| 9 |  | addcom | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐵  +  𝐶 )  =  ( 𝐶  +  𝐵 ) ) | 
						
							| 10 | 9 | 3adant1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐵  +  𝐶 )  =  ( 𝐶  +  𝐵 ) ) | 
						
							| 11 | 8 10 | eqtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐴  +  𝐶 )  −  ( 𝐴  −  𝐵 ) )  =  ( 𝐵  +  𝐶 ) ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐹 ‘ ( ( 𝐴  +  𝐶 )  −  ( 𝐴  −  𝐵 ) ) )  =  ( 𝐹 ‘ ( 𝐵  +  𝐶 ) ) ) | 
						
							| 13 | 6 12 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐹  shift  ( 𝐴  −  𝐵 ) ) ‘ ( 𝐴  +  𝐶 ) )  =  ( 𝐹 ‘ ( 𝐵  +  𝐶 ) ) ) |