Metamath Proof Explorer


Theorem shorth

Description: Members of orthogonal subspaces are orthogonal. (Contributed by NM, 17-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion shorth
|- ( H e. SH -> ( G C_ ( _|_ ` H ) -> ( ( A e. G /\ B e. H ) -> ( A .ih B ) = 0 ) ) )

Proof

Step Hyp Ref Expression
1 ssel
 |-  ( G C_ ( _|_ ` H ) -> ( A e. G -> A e. ( _|_ ` H ) ) )
2 1 anim1d
 |-  ( G C_ ( _|_ ` H ) -> ( ( A e. G /\ B e. H ) -> ( A e. ( _|_ ` H ) /\ B e. H ) ) )
3 2 imp
 |-  ( ( G C_ ( _|_ ` H ) /\ ( A e. G /\ B e. H ) ) -> ( A e. ( _|_ ` H ) /\ B e. H ) )
4 3 ancomd
 |-  ( ( G C_ ( _|_ ` H ) /\ ( A e. G /\ B e. H ) ) -> ( B e. H /\ A e. ( _|_ ` H ) ) )
5 shocorth
 |-  ( H e. SH -> ( ( B e. H /\ A e. ( _|_ ` H ) ) -> ( B .ih A ) = 0 ) )
6 5 imp
 |-  ( ( H e. SH /\ ( B e. H /\ A e. ( _|_ ` H ) ) ) -> ( B .ih A ) = 0 )
7 shss
 |-  ( H e. SH -> H C_ ~H )
8 7 sseld
 |-  ( H e. SH -> ( B e. H -> B e. ~H ) )
9 shocss
 |-  ( H e. SH -> ( _|_ ` H ) C_ ~H )
10 9 sseld
 |-  ( H e. SH -> ( A e. ( _|_ ` H ) -> A e. ~H ) )
11 8 10 anim12d
 |-  ( H e. SH -> ( ( B e. H /\ A e. ( _|_ ` H ) ) -> ( B e. ~H /\ A e. ~H ) ) )
12 11 imp
 |-  ( ( H e. SH /\ ( B e. H /\ A e. ( _|_ ` H ) ) ) -> ( B e. ~H /\ A e. ~H ) )
13 orthcom
 |-  ( ( B e. ~H /\ A e. ~H ) -> ( ( B .ih A ) = 0 <-> ( A .ih B ) = 0 ) )
14 12 13 syl
 |-  ( ( H e. SH /\ ( B e. H /\ A e. ( _|_ ` H ) ) ) -> ( ( B .ih A ) = 0 <-> ( A .ih B ) = 0 ) )
15 6 14 mpbid
 |-  ( ( H e. SH /\ ( B e. H /\ A e. ( _|_ ` H ) ) ) -> ( A .ih B ) = 0 )
16 4 15 sylan2
 |-  ( ( H e. SH /\ ( G C_ ( _|_ ` H ) /\ ( A e. G /\ B e. H ) ) ) -> ( A .ih B ) = 0 )
17 16 exp32
 |-  ( H e. SH -> ( G C_ ( _|_ ` H ) -> ( ( A e. G /\ B e. H ) -> ( A .ih B ) = 0 ) ) )