| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssel |  |-  ( G C_ ( _|_ ` H ) -> ( A e. G -> A e. ( _|_ ` H ) ) ) | 
						
							| 2 | 1 | anim1d |  |-  ( G C_ ( _|_ ` H ) -> ( ( A e. G /\ B e. H ) -> ( A e. ( _|_ ` H ) /\ B e. H ) ) ) | 
						
							| 3 | 2 | imp |  |-  ( ( G C_ ( _|_ ` H ) /\ ( A e. G /\ B e. H ) ) -> ( A e. ( _|_ ` H ) /\ B e. H ) ) | 
						
							| 4 | 3 | ancomd |  |-  ( ( G C_ ( _|_ ` H ) /\ ( A e. G /\ B e. H ) ) -> ( B e. H /\ A e. ( _|_ ` H ) ) ) | 
						
							| 5 |  | shocorth |  |-  ( H e. SH -> ( ( B e. H /\ A e. ( _|_ ` H ) ) -> ( B .ih A ) = 0 ) ) | 
						
							| 6 | 5 | imp |  |-  ( ( H e. SH /\ ( B e. H /\ A e. ( _|_ ` H ) ) ) -> ( B .ih A ) = 0 ) | 
						
							| 7 |  | shss |  |-  ( H e. SH -> H C_ ~H ) | 
						
							| 8 | 7 | sseld |  |-  ( H e. SH -> ( B e. H -> B e. ~H ) ) | 
						
							| 9 |  | shocss |  |-  ( H e. SH -> ( _|_ ` H ) C_ ~H ) | 
						
							| 10 | 9 | sseld |  |-  ( H e. SH -> ( A e. ( _|_ ` H ) -> A e. ~H ) ) | 
						
							| 11 | 8 10 | anim12d |  |-  ( H e. SH -> ( ( B e. H /\ A e. ( _|_ ` H ) ) -> ( B e. ~H /\ A e. ~H ) ) ) | 
						
							| 12 | 11 | imp |  |-  ( ( H e. SH /\ ( B e. H /\ A e. ( _|_ ` H ) ) ) -> ( B e. ~H /\ A e. ~H ) ) | 
						
							| 13 |  | orthcom |  |-  ( ( B e. ~H /\ A e. ~H ) -> ( ( B .ih A ) = 0 <-> ( A .ih B ) = 0 ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( H e. SH /\ ( B e. H /\ A e. ( _|_ ` H ) ) ) -> ( ( B .ih A ) = 0 <-> ( A .ih B ) = 0 ) ) | 
						
							| 15 | 6 14 | mpbid |  |-  ( ( H e. SH /\ ( B e. H /\ A e. ( _|_ ` H ) ) ) -> ( A .ih B ) = 0 ) | 
						
							| 16 | 4 15 | sylan2 |  |-  ( ( H e. SH /\ ( G C_ ( _|_ ` H ) /\ ( A e. G /\ B e. H ) ) ) -> ( A .ih B ) = 0 ) | 
						
							| 17 | 16 | exp32 |  |-  ( H e. SH -> ( G C_ ( _|_ ` H ) -> ( ( A e. G /\ B e. H ) -> ( A .ih B ) = 0 ) ) ) |