Metamath Proof Explorer


Theorem shsval

Description: Value of subspace sum of two Hilbert space subspaces. Definition of subspace sum in Kalmbach p. 65. (Contributed by NM, 16-Oct-1999) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion shsval
|- ( ( A e. SH /\ B e. SH ) -> ( A +H B ) = ( +h " ( A X. B ) ) )

Proof

Step Hyp Ref Expression
1 xpeq12
 |-  ( ( x = A /\ y = B ) -> ( x X. y ) = ( A X. B ) )
2 1 imaeq2d
 |-  ( ( x = A /\ y = B ) -> ( +h " ( x X. y ) ) = ( +h " ( A X. B ) ) )
3 df-shs
 |-  +H = ( x e. SH , y e. SH |-> ( +h " ( x X. y ) ) )
4 hilablo
 |-  +h e. AbelOp
5 imaexg
 |-  ( +h e. AbelOp -> ( +h " ( A X. B ) ) e. _V )
6 4 5 ax-mp
 |-  ( +h " ( A X. B ) ) e. _V
7 2 3 6 ovmpoa
 |-  ( ( A e. SH /\ B e. SH ) -> ( A +H B ) = ( +h " ( A X. B ) ) )