Metamath Proof Explorer


Theorem shsval

Description: Value of subspace sum of two Hilbert space subspaces. Definition of subspace sum in Kalmbach p. 65. (Contributed by NM, 16-Oct-1999) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion shsval ASBSA+B=+A×B

Proof

Step Hyp Ref Expression
1 xpeq12 x=Ay=Bx×y=A×B
2 1 imaeq2d x=Ay=B+x×y=+A×B
3 df-shs +=xS,yS+x×y
4 hilablo +AbelOp
5 imaexg +AbelOp+A×BV
6 4 5 ax-mp +A×BV
7 2 3 6 ovmpoa ASBSA+B=+A×B