Metamath Proof Explorer


Theorem sigagenid

Description: The sigma-algebra generated by a sigma-algebra is itself. (Contributed by Thierry Arnoux, 4-Jun-2017)

Ref Expression
Assertion sigagenid
|- ( S e. U. ran sigAlgebra -> ( sigaGen ` S ) = S )

Proof

Step Hyp Ref Expression
1 sgon
 |-  ( S e. U. ran sigAlgebra -> S e. ( sigAlgebra ` U. S ) )
2 ssid
 |-  S C_ S
3 sigagenss
 |-  ( ( S e. ( sigAlgebra ` U. S ) /\ S C_ S ) -> ( sigaGen ` S ) C_ S )
4 1 2 3 sylancl
 |-  ( S e. U. ran sigAlgebra -> ( sigaGen ` S ) C_ S )
5 sssigagen
 |-  ( S e. U. ran sigAlgebra -> S C_ ( sigaGen ` S ) )
6 4 5 eqssd
 |-  ( S e. U. ran sigAlgebra -> ( sigaGen ` S ) = S )