Description: The sigma-algebra generated by a sigma-algebra is itself. (Contributed by Thierry Arnoux, 4-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | sigagenid | |- ( S e. U. ran sigAlgebra -> ( sigaGen ` S ) = S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgon | |- ( S e. U. ran sigAlgebra -> S e. ( sigAlgebra ` U. S ) ) |
|
2 | ssid | |- S C_ S |
|
3 | sigagenss | |- ( ( S e. ( sigAlgebra ` U. S ) /\ S C_ S ) -> ( sigaGen ` S ) C_ S ) |
|
4 | 1 2 3 | sylancl | |- ( S e. U. ran sigAlgebra -> ( sigaGen ` S ) C_ S ) |
5 | sssigagen | |- ( S e. U. ran sigAlgebra -> S C_ ( sigaGen ` S ) ) |
|
6 | 4 5 | eqssd | |- ( S e. U. ran sigAlgebra -> ( sigaGen ` S ) = S ) |