| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p |  |-  .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) | 
						
							| 2 |  | signsv.w |  |-  W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } | 
						
							| 3 |  | signsv.t |  |-  T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v |  |-  V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) | 
						
							| 5 |  | fzofi |  |-  ( 1 ..^ ( # ` f ) ) e. Fin | 
						
							| 6 | 5 | a1i |  |-  ( f e. Word RR -> ( 1 ..^ ( # ` f ) ) e. Fin ) | 
						
							| 7 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 8 | 7 | a1i |  |-  ( ( ( f e. Word RR /\ j e. ( 1 ..^ ( # ` f ) ) ) /\ ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) ) -> 1 e. NN0 ) | 
						
							| 9 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 10 | 9 | a1i |  |-  ( ( ( f e. Word RR /\ j e. ( 1 ..^ ( # ` f ) ) ) /\ -. ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) ) -> 0 e. NN0 ) | 
						
							| 11 | 8 10 | ifclda |  |-  ( ( f e. Word RR /\ j e. ( 1 ..^ ( # ` f ) ) ) -> if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) e. NN0 ) | 
						
							| 12 | 6 11 | fsumnn0cl |  |-  ( f e. Word RR -> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) e. NN0 ) | 
						
							| 13 | 4 12 | fmpti |  |-  V : Word RR --> NN0 |