Step |
Hyp |
Ref |
Expression |
1 |
|
signsv.p |
|- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) |
2 |
|
signsv.w |
|- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } |
3 |
|
signsv.t |
|- T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) |
4 |
|
signsv.v |
|- V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) |
5 |
|
fzofi |
|- ( 1 ..^ ( # ` f ) ) e. Fin |
6 |
5
|
a1i |
|- ( f e. Word RR -> ( 1 ..^ ( # ` f ) ) e. Fin ) |
7 |
|
1nn0 |
|- 1 e. NN0 |
8 |
7
|
a1i |
|- ( ( ( f e. Word RR /\ j e. ( 1 ..^ ( # ` f ) ) ) /\ ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) ) -> 1 e. NN0 ) |
9 |
|
0nn0 |
|- 0 e. NN0 |
10 |
9
|
a1i |
|- ( ( ( f e. Word RR /\ j e. ( 1 ..^ ( # ` f ) ) ) /\ -. ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) ) -> 0 e. NN0 ) |
11 |
8 10
|
ifclda |
|- ( ( f e. Word RR /\ j e. ( 1 ..^ ( # ` f ) ) ) -> if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) e. NN0 ) |
12 |
6 11
|
fsumnn0cl |
|- ( f e. Word RR -> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) e. NN0 ) |
13 |
4 12
|
fmpti |
|- V : Word RR --> NN0 |