| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p | ⊢  ⨣   =  ( 𝑎  ∈  { - 1 ,  0 ,  1 } ,  𝑏  ∈  { - 1 ,  0 ,  1 }  ↦  if ( 𝑏  =  0 ,  𝑎 ,  𝑏 ) ) | 
						
							| 2 |  | signsv.w | ⊢ 𝑊  =  { 〈 ( Base ‘ ndx ) ,  { - 1 ,  0 ,  1 } 〉 ,  〈 ( +g ‘ ndx ) ,   ⨣  〉 } | 
						
							| 3 |  | signsv.t | ⊢ 𝑇  =  ( 𝑓  ∈  Word  ℝ  ↦  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) )  ↦  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑛 )  ↦  ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v | ⊢ 𝑉  =  ( 𝑓  ∈  Word  ℝ  ↦  Σ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 ) ) | 
						
							| 5 |  | fzofi | ⊢ ( 1 ..^ ( ♯ ‘ 𝑓 ) )  ∈  Fin | 
						
							| 6 | 5 | a1i | ⊢ ( 𝑓  ∈  Word  ℝ  →  ( 1 ..^ ( ♯ ‘ 𝑓 ) )  ∈  Fin ) | 
						
							| 7 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 8 | 7 | a1i | ⊢ ( ( ( 𝑓  ∈  Word  ℝ  ∧  𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  ∧  ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗  −  1 ) ) )  →  1  ∈  ℕ0 ) | 
						
							| 9 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 10 | 9 | a1i | ⊢ ( ( ( 𝑓  ∈  Word  ℝ  ∧  𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  ∧  ¬  ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗  −  1 ) ) )  →  0  ∈  ℕ0 ) | 
						
							| 11 | 8 10 | ifclda | ⊢ ( ( 𝑓  ∈  Word  ℝ  ∧  𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  →  if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 )  ∈  ℕ0 ) | 
						
							| 12 | 6 11 | fsumnn0cl | ⊢ ( 𝑓  ∈  Word  ℝ  →  Σ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 )  ∈  ℕ0 ) | 
						
							| 13 | 4 12 | fmpti | ⊢ 𝑉 : Word  ℝ ⟶ ℕ0 |