Step |
Hyp |
Ref |
Expression |
1 |
|
signsv.p |
⊢ ⨣ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) ) |
2 |
|
signsv.w |
⊢ 𝑊 = { 〈 ( Base ‘ ndx ) , { - 1 , 0 , 1 } 〉 , 〈 ( +g ‘ ndx ) , ⨣ 〉 } |
3 |
|
signsv.t |
⊢ 𝑇 = ( 𝑓 ∈ Word ℝ ↦ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ↦ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) |
4 |
|
signsv.v |
⊢ 𝑉 = ( 𝑓 ∈ Word ℝ ↦ Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) ) |
5 |
|
fzofi |
⊢ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ∈ Fin |
6 |
5
|
a1i |
⊢ ( 𝑓 ∈ Word ℝ → ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ∈ Fin ) |
7 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
8 |
7
|
a1i |
⊢ ( ( ( 𝑓 ∈ Word ℝ ∧ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ∧ ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) ) → 1 ∈ ℕ0 ) |
9 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
10 |
9
|
a1i |
⊢ ( ( ( 𝑓 ∈ Word ℝ ∧ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ∧ ¬ ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) ) → 0 ∈ ℕ0 ) |
11 |
8 10
|
ifclda |
⊢ ( ( 𝑓 ∈ Word ℝ ∧ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) → if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) ∈ ℕ0 ) |
12 |
6 11
|
fsumnn0cl |
⊢ ( 𝑓 ∈ Word ℝ → Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) ∈ ℕ0 ) |
13 |
4 12
|
fmpti |
⊢ 𝑉 : Word ℝ ⟶ ℕ0 |