Metamath Proof Explorer


Theorem signsvvf

Description: V is a function. (Contributed by Thierry Arnoux, 8-Oct-2018)

Ref Expression
Hypotheses signsv.p ˙=a101,b101ifb=0ab
signsv.w W=Basendx101+ndx˙
signsv.t T=fWordn0..^fWi=0nsgnfi
signsv.v V=fWordj1..^fifTfjTfj110
Assertion signsvvf V:Word0

Proof

Step Hyp Ref Expression
1 signsv.p ˙=a101,b101ifb=0ab
2 signsv.w W=Basendx101+ndx˙
3 signsv.t T=fWordn0..^fWi=0nsgnfi
4 signsv.v V=fWordj1..^fifTfjTfj110
5 fzofi 1..^fFin
6 5 a1i fWord1..^fFin
7 1nn0 10
8 7 a1i fWordj1..^fTfjTfj110
9 0nn0 00
10 9 a1i fWordj1..^f¬TfjTfj100
11 8 10 ifclda fWordj1..^fifTfjTfj1100
12 6 11 fsumnn0cl fWordj1..^fifTfjTfj1100
13 4 12 fmpti V:Word0