Metamath Proof Explorer


Theorem signsvf0

Description: There is no change of sign in the empty word. (Contributed by Thierry Arnoux, 8-Oct-2018)

Ref Expression
Hypotheses signsv.p ˙=a101,b101ifb=0ab
signsv.w W=Basendx101+ndx˙
signsv.t T=fWordn0..^fWi=0nsgnfi
signsv.v V=fWordj1..^fifTfjTfj110
Assertion signsvf0 V=0

Proof

Step Hyp Ref Expression
1 signsv.p ˙=a101,b101ifb=0ab
2 signsv.w W=Basendx101+ndx˙
3 signsv.t T=fWordn0..^fWi=0nsgnfi
4 signsv.v V=fWordj1..^fifTfjTfj110
5 wrd0 Word
6 1 2 3 4 signsvvfval WordV=j1..^ifTjTj110
7 5 6 ax-mp V=j1..^ifTjTj110
8 hash0 =0
9 8 oveq2i 1..^=1..^0
10 0le1 01
11 1z 1
12 0z 0
13 fzon 10011..^0=
14 11 12 13 mp2an 011..^0=
15 10 14 mpbi 1..^0=
16 9 15 eqtri 1..^=
17 16 sumeq1i j1..^ifTjTj110=jifTjTj110
18 sum0 jifTjTj110=0
19 7 17 18 3eqtri V=0