| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p |  |-  .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) | 
						
							| 2 |  | signsv.w |  |-  W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } | 
						
							| 3 |  | signsv.t |  |-  T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v |  |-  V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) | 
						
							| 5 |  | wrd0 |  |-  (/) e. Word RR | 
						
							| 6 | 1 2 3 4 | signsvvfval |  |-  ( (/) e. Word RR -> ( V ` (/) ) = sum_ j e. ( 1 ..^ ( # ` (/) ) ) if ( ( ( T ` (/) ) ` j ) =/= ( ( T ` (/) ) ` ( j - 1 ) ) , 1 , 0 ) ) | 
						
							| 7 | 5 6 | ax-mp |  |-  ( V ` (/) ) = sum_ j e. ( 1 ..^ ( # ` (/) ) ) if ( ( ( T ` (/) ) ` j ) =/= ( ( T ` (/) ) ` ( j - 1 ) ) , 1 , 0 ) | 
						
							| 8 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 9 | 8 | oveq2i |  |-  ( 1 ..^ ( # ` (/) ) ) = ( 1 ..^ 0 ) | 
						
							| 10 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 11 |  | 1z |  |-  1 e. ZZ | 
						
							| 12 |  | 0z |  |-  0 e. ZZ | 
						
							| 13 |  | fzon |  |-  ( ( 1 e. ZZ /\ 0 e. ZZ ) -> ( 0 <_ 1 <-> ( 1 ..^ 0 ) = (/) ) ) | 
						
							| 14 | 11 12 13 | mp2an |  |-  ( 0 <_ 1 <-> ( 1 ..^ 0 ) = (/) ) | 
						
							| 15 | 10 14 | mpbi |  |-  ( 1 ..^ 0 ) = (/) | 
						
							| 16 | 9 15 | eqtri |  |-  ( 1 ..^ ( # ` (/) ) ) = (/) | 
						
							| 17 | 16 | sumeq1i |  |-  sum_ j e. ( 1 ..^ ( # ` (/) ) ) if ( ( ( T ` (/) ) ` j ) =/= ( ( T ` (/) ) ` ( j - 1 ) ) , 1 , 0 ) = sum_ j e. (/) if ( ( ( T ` (/) ) ` j ) =/= ( ( T ` (/) ) ` ( j - 1 ) ) , 1 , 0 ) | 
						
							| 18 |  | sum0 |  |-  sum_ j e. (/) if ( ( ( T ` (/) ) ` j ) =/= ( ( T ` (/) ) ` ( j - 1 ) ) , 1 , 0 ) = 0 | 
						
							| 19 | 7 17 18 | 3eqtri |  |-  ( V ` (/) ) = 0 |