Step |
Hyp |
Ref |
Expression |
1 |
|
signsv.p |
|- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) |
2 |
|
signsv.w |
|- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } |
3 |
|
signsv.t |
|- T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) |
4 |
|
signsv.v |
|- V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) |
5 |
|
wrd0 |
|- (/) e. Word RR |
6 |
1 2 3 4
|
signsvvfval |
|- ( (/) e. Word RR -> ( V ` (/) ) = sum_ j e. ( 1 ..^ ( # ` (/) ) ) if ( ( ( T ` (/) ) ` j ) =/= ( ( T ` (/) ) ` ( j - 1 ) ) , 1 , 0 ) ) |
7 |
5 6
|
ax-mp |
|- ( V ` (/) ) = sum_ j e. ( 1 ..^ ( # ` (/) ) ) if ( ( ( T ` (/) ) ` j ) =/= ( ( T ` (/) ) ` ( j - 1 ) ) , 1 , 0 ) |
8 |
|
hash0 |
|- ( # ` (/) ) = 0 |
9 |
8
|
oveq2i |
|- ( 1 ..^ ( # ` (/) ) ) = ( 1 ..^ 0 ) |
10 |
|
0le1 |
|- 0 <_ 1 |
11 |
|
1z |
|- 1 e. ZZ |
12 |
|
0z |
|- 0 e. ZZ |
13 |
|
fzon |
|- ( ( 1 e. ZZ /\ 0 e. ZZ ) -> ( 0 <_ 1 <-> ( 1 ..^ 0 ) = (/) ) ) |
14 |
11 12 13
|
mp2an |
|- ( 0 <_ 1 <-> ( 1 ..^ 0 ) = (/) ) |
15 |
10 14
|
mpbi |
|- ( 1 ..^ 0 ) = (/) |
16 |
9 15
|
eqtri |
|- ( 1 ..^ ( # ` (/) ) ) = (/) |
17 |
16
|
sumeq1i |
|- sum_ j e. ( 1 ..^ ( # ` (/) ) ) if ( ( ( T ` (/) ) ` j ) =/= ( ( T ` (/) ) ` ( j - 1 ) ) , 1 , 0 ) = sum_ j e. (/) if ( ( ( T ` (/) ) ` j ) =/= ( ( T ` (/) ) ` ( j - 1 ) ) , 1 , 0 ) |
18 |
|
sum0 |
|- sum_ j e. (/) if ( ( ( T ` (/) ) ` j ) =/= ( ( T ` (/) ) ` ( j - 1 ) ) , 1 , 0 ) = 0 |
19 |
7 17 18
|
3eqtri |
|- ( V ` (/) ) = 0 |