Step |
Hyp |
Ref |
Expression |
1 |
|
signsv.p |
|- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) |
2 |
|
signsv.w |
|- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } |
3 |
|
signsv.t |
|- T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) |
4 |
|
signsv.v |
|- V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) |
5 |
|
fveq2 |
|- ( f = F -> ( # ` f ) = ( # ` F ) ) |
6 |
5
|
oveq2d |
|- ( f = F -> ( 1 ..^ ( # ` f ) ) = ( 1 ..^ ( # ` F ) ) ) |
7 |
|
fveq2 |
|- ( f = F -> ( T ` f ) = ( T ` F ) ) |
8 |
7
|
fveq1d |
|- ( f = F -> ( ( T ` f ) ` j ) = ( ( T ` F ) ` j ) ) |
9 |
7
|
fveq1d |
|- ( f = F -> ( ( T ` f ) ` ( j - 1 ) ) = ( ( T ` F ) ` ( j - 1 ) ) ) |
10 |
8 9
|
neeq12d |
|- ( f = F -> ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) <-> ( ( T ` F ) ` j ) =/= ( ( T ` F ) ` ( j - 1 ) ) ) ) |
11 |
10
|
ifbid |
|- ( f = F -> if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) = if ( ( ( T ` F ) ` j ) =/= ( ( T ` F ) ` ( j - 1 ) ) , 1 , 0 ) ) |
12 |
11
|
adantr |
|- ( ( f = F /\ j e. ( 1 ..^ ( # ` f ) ) ) -> if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) = if ( ( ( T ` F ) ` j ) =/= ( ( T ` F ) ` ( j - 1 ) ) , 1 , 0 ) ) |
13 |
6 12
|
sumeq12dv |
|- ( f = F -> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) = sum_ j e. ( 1 ..^ ( # ` F ) ) if ( ( ( T ` F ) ` j ) =/= ( ( T ` F ) ` ( j - 1 ) ) , 1 , 0 ) ) |
14 |
|
sumex |
|- sum_ j e. ( 1 ..^ ( # ` F ) ) if ( ( ( T ` F ) ` j ) =/= ( ( T ` F ) ` ( j - 1 ) ) , 1 , 0 ) e. _V |
15 |
13 4 14
|
fvmpt |
|- ( F e. Word RR -> ( V ` F ) = sum_ j e. ( 1 ..^ ( # ` F ) ) if ( ( ( T ` F ) ` j ) =/= ( ( T ` F ) ` ( j - 1 ) ) , 1 , 0 ) ) |