| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p | ⊢  ⨣   =  ( 𝑎  ∈  { - 1 ,  0 ,  1 } ,  𝑏  ∈  { - 1 ,  0 ,  1 }  ↦  if ( 𝑏  =  0 ,  𝑎 ,  𝑏 ) ) | 
						
							| 2 |  | signsv.w | ⊢ 𝑊  =  { 〈 ( Base ‘ ndx ) ,  { - 1 ,  0 ,  1 } 〉 ,  〈 ( +g ‘ ndx ) ,   ⨣  〉 } | 
						
							| 3 |  | signsv.t | ⊢ 𝑇  =  ( 𝑓  ∈  Word  ℝ  ↦  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) )  ↦  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑛 )  ↦  ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v | ⊢ 𝑉  =  ( 𝑓  ∈  Word  ℝ  ↦  Σ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 ) ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑓  =  𝐹  →  ( ♯ ‘ 𝑓 )  =  ( ♯ ‘ 𝐹 ) ) | 
						
							| 6 | 5 | oveq2d | ⊢ ( 𝑓  =  𝐹  →  ( 1 ..^ ( ♯ ‘ 𝑓 ) )  =  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑇 ‘ 𝑓 )  =  ( 𝑇 ‘ 𝐹 ) ) | 
						
							| 8 | 7 | fveq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑗 ) ) | 
						
							| 9 | 7 | fveq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗  −  1 ) )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ ( 𝑗  −  1 ) ) ) | 
						
							| 10 | 8 9 | neeq12d | ⊢ ( 𝑓  =  𝐹  →  ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗  −  1 ) )  ↔  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝐹 ) ‘ ( 𝑗  −  1 ) ) ) ) | 
						
							| 11 | 10 | ifbid | ⊢ ( 𝑓  =  𝐹  →  if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 )  =  if ( ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝐹 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  →  if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 )  =  if ( ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝐹 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 ) ) | 
						
							| 13 | 6 12 | sumeq12dv | ⊢ ( 𝑓  =  𝐹  →  Σ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 )  =  Σ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) if ( ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝐹 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 ) ) | 
						
							| 14 |  | sumex | ⊢ Σ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) if ( ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝐹 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 )  ∈  V | 
						
							| 15 | 13 4 14 | fvmpt | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( 𝑉 ‘ 𝐹 )  =  Σ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) if ( ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝐹 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 ) ) |