Step |
Hyp |
Ref |
Expression |
1 |
|
signsv.p |
⊢ ⨣ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) ) |
2 |
|
signsv.w |
⊢ 𝑊 = { 〈 ( Base ‘ ndx ) , { - 1 , 0 , 1 } 〉 , 〈 ( +g ‘ ndx ) , ⨣ 〉 } |
3 |
|
signsv.t |
⊢ 𝑇 = ( 𝑓 ∈ Word ℝ ↦ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ↦ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) |
4 |
|
signsv.v |
⊢ 𝑉 = ( 𝑓 ∈ Word ℝ ↦ Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) ) |
5 |
|
fveq2 |
⊢ ( 𝑓 = 𝐹 → ( ♯ ‘ 𝑓 ) = ( ♯ ‘ 𝐹 ) ) |
6 |
5
|
oveq2d |
⊢ ( 𝑓 = 𝐹 → ( 1 ..^ ( ♯ ‘ 𝑓 ) ) = ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
7 |
|
fveq2 |
⊢ ( 𝑓 = 𝐹 → ( 𝑇 ‘ 𝑓 ) = ( 𝑇 ‘ 𝐹 ) ) |
8 |
7
|
fveq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑗 ) ) |
9 |
7
|
fveq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) = ( ( 𝑇 ‘ 𝐹 ) ‘ ( 𝑗 − 1 ) ) ) |
10 |
8 9
|
neeq12d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) ↔ ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝐹 ) ‘ ( 𝑗 − 1 ) ) ) ) |
11 |
10
|
ifbid |
⊢ ( 𝑓 = 𝐹 → if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) = if ( ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝐹 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) → if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) = if ( ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝐹 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) ) |
13 |
6 12
|
sumeq12dv |
⊢ ( 𝑓 = 𝐹 → Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) = Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) if ( ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝐹 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) ) |
14 |
|
sumex |
⊢ Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) if ( ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝐹 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) ∈ V |
15 |
13 4 14
|
fvmpt |
⊢ ( 𝐹 ∈ Word ℝ → ( 𝑉 ‘ 𝐹 ) = Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) if ( ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝐹 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) ) |