Step |
Hyp |
Ref |
Expression |
1 |
|
signsv.p |
|- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) |
2 |
|
signsv.w |
|- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } |
3 |
|
signsv.t |
|- T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) |
4 |
|
signsv.v |
|- V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) |
5 |
|
s1cl |
|- ( K e. RR -> <" K "> e. Word RR ) |
6 |
1 2 3 4
|
signsvvfval |
|- ( <" K "> e. Word RR -> ( V ` <" K "> ) = sum_ j e. ( 1 ..^ ( # ` <" K "> ) ) if ( ( ( T ` <" K "> ) ` j ) =/= ( ( T ` <" K "> ) ` ( j - 1 ) ) , 1 , 0 ) ) |
7 |
5 6
|
syl |
|- ( K e. RR -> ( V ` <" K "> ) = sum_ j e. ( 1 ..^ ( # ` <" K "> ) ) if ( ( ( T ` <" K "> ) ` j ) =/= ( ( T ` <" K "> ) ` ( j - 1 ) ) , 1 , 0 ) ) |
8 |
|
s1len |
|- ( # ` <" K "> ) = 1 |
9 |
8
|
oveq2i |
|- ( 1 ..^ ( # ` <" K "> ) ) = ( 1 ..^ 1 ) |
10 |
|
fzo0 |
|- ( 1 ..^ 1 ) = (/) |
11 |
9 10
|
eqtri |
|- ( 1 ..^ ( # ` <" K "> ) ) = (/) |
12 |
11
|
sumeq1i |
|- sum_ j e. ( 1 ..^ ( # ` <" K "> ) ) if ( ( ( T ` <" K "> ) ` j ) =/= ( ( T ` <" K "> ) ` ( j - 1 ) ) , 1 , 0 ) = sum_ j e. (/) if ( ( ( T ` <" K "> ) ` j ) =/= ( ( T ` <" K "> ) ` ( j - 1 ) ) , 1 , 0 ) |
13 |
|
sum0 |
|- sum_ j e. (/) if ( ( ( T ` <" K "> ) ` j ) =/= ( ( T ` <" K "> ) ` ( j - 1 ) ) , 1 , 0 ) = 0 |
14 |
12 13
|
eqtri |
|- sum_ j e. ( 1 ..^ ( # ` <" K "> ) ) if ( ( ( T ` <" K "> ) ` j ) =/= ( ( T ` <" K "> ) ` ( j - 1 ) ) , 1 , 0 ) = 0 |
15 |
7 14
|
eqtrdi |
|- ( K e. RR -> ( V ` <" K "> ) = 0 ) |