| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p |  |-  .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) | 
						
							| 2 |  | signsv.w |  |-  W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } | 
						
							| 3 |  | signsv.t |  |-  T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v |  |-  V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) | 
						
							| 5 |  | eldifi |  |-  ( F e. ( Word RR \ { (/) } ) -> F e. Word RR ) | 
						
							| 6 |  | s1cl |  |-  ( K e. RR -> <" K "> e. Word RR ) | 
						
							| 7 |  | ccatcl |  |-  ( ( F e. Word RR /\ <" K "> e. Word RR ) -> ( F ++ <" K "> ) e. Word RR ) | 
						
							| 8 | 5 6 7 | syl2an |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( F ++ <" K "> ) e. Word RR ) | 
						
							| 9 | 1 2 3 4 | signsvvfval |  |-  ( ( F ++ <" K "> ) e. Word RR -> ( V ` ( F ++ <" K "> ) ) = sum_ j e. ( 1 ..^ ( # ` ( F ++ <" K "> ) ) ) if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( V ` ( F ++ <" K "> ) ) = sum_ j e. ( 1 ..^ ( # ` ( F ++ <" K "> ) ) ) if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) ) | 
						
							| 11 |  | ccatlen |  |-  ( ( F e. Word RR /\ <" K "> e. Word RR ) -> ( # ` ( F ++ <" K "> ) ) = ( ( # ` F ) + ( # ` <" K "> ) ) ) | 
						
							| 12 | 5 6 11 | syl2an |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( # ` ( F ++ <" K "> ) ) = ( ( # ` F ) + ( # ` <" K "> ) ) ) | 
						
							| 13 |  | s1len |  |-  ( # ` <" K "> ) = 1 | 
						
							| 14 | 13 | oveq2i |  |-  ( ( # ` F ) + ( # ` <" K "> ) ) = ( ( # ` F ) + 1 ) | 
						
							| 15 | 12 14 | eqtrdi |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( # ` ( F ++ <" K "> ) ) = ( ( # ` F ) + 1 ) ) | 
						
							| 16 | 15 | oveq2d |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( 1 ..^ ( # ` ( F ++ <" K "> ) ) ) = ( 1 ..^ ( ( # ` F ) + 1 ) ) ) | 
						
							| 17 | 16 | sumeq1d |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> sum_ j e. ( 1 ..^ ( # ` ( F ++ <" K "> ) ) ) if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) = sum_ j e. ( 1 ..^ ( ( # ` F ) + 1 ) ) if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) ) | 
						
							| 18 |  | eldifsn |  |-  ( F e. ( Word RR \ { (/) } ) <-> ( F e. Word RR /\ F =/= (/) ) ) | 
						
							| 19 |  | lennncl |  |-  ( ( F e. Word RR /\ F =/= (/) ) -> ( # ` F ) e. NN ) | 
						
							| 20 | 18 19 | sylbi |  |-  ( F e. ( Word RR \ { (/) } ) -> ( # ` F ) e. NN ) | 
						
							| 21 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 22 | 20 21 | eleqtrdi |  |-  ( F e. ( Word RR \ { (/) } ) -> ( # ` F ) e. ( ZZ>= ` 1 ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( # ` F ) e. ( ZZ>= ` 1 ) ) | 
						
							| 24 |  | 1cnd |  |-  ( ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ... ( # ` F ) ) ) /\ ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) ) -> 1 e. CC ) | 
						
							| 25 |  | 0cnd |  |-  ( ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ... ( # ` F ) ) ) /\ -. ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) ) -> 0 e. CC ) | 
						
							| 26 | 24 25 | ifclda |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ... ( # ` F ) ) ) -> if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) e. CC ) | 
						
							| 27 |  | fveq2 |  |-  ( j = ( # ` F ) -> ( ( T ` ( F ++ <" K "> ) ) ` j ) = ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) ) | 
						
							| 28 |  | fvoveq1 |  |-  ( j = ( # ` F ) -> ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) = ( ( T ` ( F ++ <" K "> ) ) ` ( ( # ` F ) - 1 ) ) ) | 
						
							| 29 | 27 28 | neeq12d |  |-  ( j = ( # ` F ) -> ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) <-> ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( ( # ` F ) - 1 ) ) ) ) | 
						
							| 30 | 29 | ifbid |  |-  ( j = ( # ` F ) -> if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) = if ( ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( ( # ` F ) - 1 ) ) , 1 , 0 ) ) | 
						
							| 31 | 23 26 30 | fzosump1 |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> sum_ j e. ( 1 ..^ ( ( # ` F ) + 1 ) ) if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) = ( sum_ j e. ( 1 ..^ ( # ` F ) ) if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) + if ( ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( ( # ` F ) - 1 ) ) , 1 , 0 ) ) ) | 
						
							| 32 | 10 17 31 | 3eqtrd |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( V ` ( F ++ <" K "> ) ) = ( sum_ j e. ( 1 ..^ ( # ` F ) ) if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) + if ( ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( ( # ` F ) - 1 ) ) , 1 , 0 ) ) ) | 
						
							| 33 | 32 | adantlr |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( V ` ( F ++ <" K "> ) ) = ( sum_ j e. ( 1 ..^ ( # ` F ) ) if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) + if ( ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( ( # ` F ) - 1 ) ) , 1 , 0 ) ) ) | 
						
							| 34 |  | simpl |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> F e. ( Word RR \ { (/) } ) ) | 
						
							| 35 | 34 | eldifad |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> F e. Word RR ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ..^ ( # ` F ) ) ) -> F e. Word RR ) | 
						
							| 37 |  | simplr |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ..^ ( # ` F ) ) ) -> K e. RR ) | 
						
							| 38 |  | fzo0ss1 |  |-  ( 1 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` F ) ) | 
						
							| 39 | 38 | a1i |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( 1 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` F ) ) ) | 
						
							| 40 | 39 | sselda |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ..^ ( # ` F ) ) ) -> j e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 41 | 1 2 3 4 | signstfvp |  |-  ( ( F e. Word RR /\ K e. RR /\ j e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ <" K "> ) ) ` j ) = ( ( T ` F ) ` j ) ) | 
						
							| 42 | 36 37 40 41 | syl3anc |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ <" K "> ) ) ` j ) = ( ( T ` F ) ` j ) ) | 
						
							| 43 |  | elfzoel2 |  |-  ( j e. ( 1 ..^ ( # ` F ) ) -> ( # ` F ) e. ZZ ) | 
						
							| 44 | 43 | adantl |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ..^ ( # ` F ) ) ) -> ( # ` F ) e. ZZ ) | 
						
							| 45 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 46 |  | eluzmn |  |-  ( ( ( # ` F ) e. ZZ /\ 1 e. NN0 ) -> ( # ` F ) e. ( ZZ>= ` ( ( # ` F ) - 1 ) ) ) | 
						
							| 47 | 44 45 46 | sylancl |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ..^ ( # ` F ) ) ) -> ( # ` F ) e. ( ZZ>= ` ( ( # ` F ) - 1 ) ) ) | 
						
							| 48 |  | fzoss2 |  |-  ( ( # ` F ) e. ( ZZ>= ` ( ( # ` F ) - 1 ) ) -> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) | 
						
							| 49 | 47 48 | syl |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ..^ ( # ` F ) ) ) -> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) | 
						
							| 50 |  | elfzo1elm1fzo0 |  |-  ( j e. ( 1 ..^ ( # ` F ) ) -> ( j - 1 ) e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) | 
						
							| 51 | 50 | adantl |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ..^ ( # ` F ) ) ) -> ( j - 1 ) e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) | 
						
							| 52 | 49 51 | sseldd |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ..^ ( # ` F ) ) ) -> ( j - 1 ) e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 53 | 1 2 3 4 | signstfvp |  |-  ( ( F e. Word RR /\ K e. RR /\ ( j - 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) = ( ( T ` F ) ` ( j - 1 ) ) ) | 
						
							| 54 | 36 37 52 53 | syl3anc |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) = ( ( T ` F ) ` ( j - 1 ) ) ) | 
						
							| 55 | 42 54 | neeq12d |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ..^ ( # ` F ) ) ) -> ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) <-> ( ( T ` F ) ` j ) =/= ( ( T ` F ) ` ( j - 1 ) ) ) ) | 
						
							| 56 | 55 | ifbid |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ..^ ( # ` F ) ) ) -> if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) = if ( ( ( T ` F ) ` j ) =/= ( ( T ` F ) ` ( j - 1 ) ) , 1 , 0 ) ) | 
						
							| 57 | 56 | sumeq2dv |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> sum_ j e. ( 1 ..^ ( # ` F ) ) if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) = sum_ j e. ( 1 ..^ ( # ` F ) ) if ( ( ( T ` F ) ` j ) =/= ( ( T ` F ) ` ( j - 1 ) ) , 1 , 0 ) ) | 
						
							| 58 | 1 2 3 4 | signsvvfval |  |-  ( F e. Word RR -> ( V ` F ) = sum_ j e. ( 1 ..^ ( # ` F ) ) if ( ( ( T ` F ) ` j ) =/= ( ( T ` F ) ` ( j - 1 ) ) , 1 , 0 ) ) | 
						
							| 59 | 35 58 | syl |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( V ` F ) = sum_ j e. ( 1 ..^ ( # ` F ) ) if ( ( ( T ` F ) ` j ) =/= ( ( T ` F ) ` ( j - 1 ) ) , 1 , 0 ) ) | 
						
							| 60 | 57 59 | eqtr4d |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> sum_ j e. ( 1 ..^ ( # ` F ) ) if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) = ( V ` F ) ) | 
						
							| 61 | 60 | adantlr |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> sum_ j e. ( 1 ..^ ( # ` F ) ) if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) = ( V ` F ) ) | 
						
							| 62 | 1 2 3 4 | signstfvn |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) = ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) .+^ ( sgn ` K ) ) ) | 
						
							| 63 | 62 | adantlr |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) = ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) .+^ ( sgn ` K ) ) ) | 
						
							| 64 | 35 | adantlr |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> F e. Word RR ) | 
						
							| 65 |  | simpr |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> K e. RR ) | 
						
							| 66 |  | fzo0end |  |-  ( ( # ` F ) e. NN -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 67 | 20 66 | syl |  |-  ( F e. ( Word RR \ { (/) } ) -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 68 | 67 | ad2antrr |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 69 | 1 2 3 4 | signstfvp |  |-  ( ( F e. Word RR /\ K e. RR /\ ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ <" K "> ) ) ` ( ( # ` F ) - 1 ) ) = ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) ) | 
						
							| 70 | 64 65 68 69 | syl3anc |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( ( T ` ( F ++ <" K "> ) ) ` ( ( # ` F ) - 1 ) ) = ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) ) | 
						
							| 71 | 63 70 | neeq12d |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( ( # ` F ) - 1 ) ) <-> ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) .+^ ( sgn ` K ) ) =/= ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) ) ) | 
						
							| 72 | 1 2 3 4 | signstfvcl |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) e. { -u 1 , 1 } ) | 
						
							| 73 | 68 72 | syldan |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) e. { -u 1 , 1 } ) | 
						
							| 74 |  | rexr |  |-  ( K e. RR -> K e. RR* ) | 
						
							| 75 |  | sgncl |  |-  ( K e. RR* -> ( sgn ` K ) e. { -u 1 , 0 , 1 } ) | 
						
							| 76 | 74 75 | syl |  |-  ( K e. RR -> ( sgn ` K ) e. { -u 1 , 0 , 1 } ) | 
						
							| 77 | 76 | adantl |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( sgn ` K ) e. { -u 1 , 0 , 1 } ) | 
						
							| 78 | 1 2 | signswch |  |-  ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) e. { -u 1 , 1 } /\ ( sgn ` K ) e. { -u 1 , 0 , 1 } ) -> ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) .+^ ( sgn ` K ) ) =/= ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) <-> ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. ( sgn ` K ) ) < 0 ) ) | 
						
							| 79 | 73 77 78 | syl2anc |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) .+^ ( sgn ` K ) ) =/= ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) <-> ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. ( sgn ` K ) ) < 0 ) ) | 
						
							| 80 | 65 | rexrd |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> K e. RR* ) | 
						
							| 81 |  | sgnsgn |  |-  ( K e. RR* -> ( sgn ` ( sgn ` K ) ) = ( sgn ` K ) ) | 
						
							| 82 | 80 81 | syl |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( sgn ` ( sgn ` K ) ) = ( sgn ` K ) ) | 
						
							| 83 | 82 | oveq2d |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( ( sgn ` ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) ) x. ( sgn ` ( sgn ` K ) ) ) = ( ( sgn ` ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) ) x. ( sgn ` K ) ) ) | 
						
							| 84 | 83 | breq1d |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( ( ( sgn ` ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) ) x. ( sgn ` ( sgn ` K ) ) ) < 0 <-> ( ( sgn ` ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) ) x. ( sgn ` K ) ) < 0 ) ) | 
						
							| 85 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 86 |  | 1re |  |-  1 e. RR | 
						
							| 87 |  | prssi |  |-  ( ( -u 1 e. RR /\ 1 e. RR ) -> { -u 1 , 1 } C_ RR ) | 
						
							| 88 | 85 86 87 | mp2an |  |-  { -u 1 , 1 } C_ RR | 
						
							| 89 | 88 73 | sselid |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) e. RR ) | 
						
							| 90 |  | sgnclre |  |-  ( K e. RR -> ( sgn ` K ) e. RR ) | 
						
							| 91 | 90 | adantl |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( sgn ` K ) e. RR ) | 
						
							| 92 |  | sgnmulsgn |  |-  ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) e. RR /\ ( sgn ` K ) e. RR ) -> ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. ( sgn ` K ) ) < 0 <-> ( ( sgn ` ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) ) x. ( sgn ` ( sgn ` K ) ) ) < 0 ) ) | 
						
							| 93 | 89 91 92 | syl2anc |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. ( sgn ` K ) ) < 0 <-> ( ( sgn ` ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) ) x. ( sgn ` ( sgn ` K ) ) ) < 0 ) ) | 
						
							| 94 |  | sgnmulsgn |  |-  ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) e. RR /\ K e. RR ) -> ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. K ) < 0 <-> ( ( sgn ` ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) ) x. ( sgn ` K ) ) < 0 ) ) | 
						
							| 95 | 89 94 | sylancom |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. K ) < 0 <-> ( ( sgn ` ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) ) x. ( sgn ` K ) ) < 0 ) ) | 
						
							| 96 | 84 93 95 | 3bitr4d |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. ( sgn ` K ) ) < 0 <-> ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. K ) < 0 ) ) | 
						
							| 97 | 71 79 96 | 3bitrd |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( ( # ` F ) - 1 ) ) <-> ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. K ) < 0 ) ) | 
						
							| 98 | 97 | ifbid |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> if ( ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( ( # ` F ) - 1 ) ) , 1 , 0 ) = if ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. K ) < 0 , 1 , 0 ) ) | 
						
							| 99 | 61 98 | oveq12d |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( sum_ j e. ( 1 ..^ ( # ` F ) ) if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) + if ( ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( ( # ` F ) - 1 ) ) , 1 , 0 ) ) = ( ( V ` F ) + if ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. K ) < 0 , 1 , 0 ) ) ) | 
						
							| 100 | 33 99 | eqtrd |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( V ` ( F ++ <" K "> ) ) = ( ( V ` F ) + if ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. K ) < 0 , 1 , 0 ) ) ) |