Step |
Hyp |
Ref |
Expression |
1 |
|
signsv.p |
|- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) |
2 |
|
signsv.w |
|- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } |
3 |
|
signsv.t |
|- T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) |
4 |
|
signsv.v |
|- V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) |
5 |
|
eldifi |
|- ( F e. ( Word RR \ { (/) } ) -> F e. Word RR ) |
6 |
|
s1cl |
|- ( K e. RR -> <" K "> e. Word RR ) |
7 |
|
ccatcl |
|- ( ( F e. Word RR /\ <" K "> e. Word RR ) -> ( F ++ <" K "> ) e. Word RR ) |
8 |
5 6 7
|
syl2an |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( F ++ <" K "> ) e. Word RR ) |
9 |
1 2 3 4
|
signsvvfval |
|- ( ( F ++ <" K "> ) e. Word RR -> ( V ` ( F ++ <" K "> ) ) = sum_ j e. ( 1 ..^ ( # ` ( F ++ <" K "> ) ) ) if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) ) |
10 |
8 9
|
syl |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( V ` ( F ++ <" K "> ) ) = sum_ j e. ( 1 ..^ ( # ` ( F ++ <" K "> ) ) ) if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) ) |
11 |
|
ccatlen |
|- ( ( F e. Word RR /\ <" K "> e. Word RR ) -> ( # ` ( F ++ <" K "> ) ) = ( ( # ` F ) + ( # ` <" K "> ) ) ) |
12 |
5 6 11
|
syl2an |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( # ` ( F ++ <" K "> ) ) = ( ( # ` F ) + ( # ` <" K "> ) ) ) |
13 |
|
s1len |
|- ( # ` <" K "> ) = 1 |
14 |
13
|
oveq2i |
|- ( ( # ` F ) + ( # ` <" K "> ) ) = ( ( # ` F ) + 1 ) |
15 |
12 14
|
eqtrdi |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( # ` ( F ++ <" K "> ) ) = ( ( # ` F ) + 1 ) ) |
16 |
15
|
oveq2d |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( 1 ..^ ( # ` ( F ++ <" K "> ) ) ) = ( 1 ..^ ( ( # ` F ) + 1 ) ) ) |
17 |
16
|
sumeq1d |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> sum_ j e. ( 1 ..^ ( # ` ( F ++ <" K "> ) ) ) if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) = sum_ j e. ( 1 ..^ ( ( # ` F ) + 1 ) ) if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) ) |
18 |
|
eldifsn |
|- ( F e. ( Word RR \ { (/) } ) <-> ( F e. Word RR /\ F =/= (/) ) ) |
19 |
|
lennncl |
|- ( ( F e. Word RR /\ F =/= (/) ) -> ( # ` F ) e. NN ) |
20 |
18 19
|
sylbi |
|- ( F e. ( Word RR \ { (/) } ) -> ( # ` F ) e. NN ) |
21 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
22 |
20 21
|
eleqtrdi |
|- ( F e. ( Word RR \ { (/) } ) -> ( # ` F ) e. ( ZZ>= ` 1 ) ) |
23 |
22
|
adantr |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( # ` F ) e. ( ZZ>= ` 1 ) ) |
24 |
|
1cnd |
|- ( ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ... ( # ` F ) ) ) /\ ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) ) -> 1 e. CC ) |
25 |
|
0cnd |
|- ( ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ... ( # ` F ) ) ) /\ -. ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) ) -> 0 e. CC ) |
26 |
24 25
|
ifclda |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ... ( # ` F ) ) ) -> if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) e. CC ) |
27 |
|
fveq2 |
|- ( j = ( # ` F ) -> ( ( T ` ( F ++ <" K "> ) ) ` j ) = ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) ) |
28 |
|
fvoveq1 |
|- ( j = ( # ` F ) -> ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) = ( ( T ` ( F ++ <" K "> ) ) ` ( ( # ` F ) - 1 ) ) ) |
29 |
27 28
|
neeq12d |
|- ( j = ( # ` F ) -> ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) <-> ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( ( # ` F ) - 1 ) ) ) ) |
30 |
29
|
ifbid |
|- ( j = ( # ` F ) -> if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) = if ( ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( ( # ` F ) - 1 ) ) , 1 , 0 ) ) |
31 |
23 26 30
|
fzosump1 |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> sum_ j e. ( 1 ..^ ( ( # ` F ) + 1 ) ) if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) = ( sum_ j e. ( 1 ..^ ( # ` F ) ) if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) + if ( ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( ( # ` F ) - 1 ) ) , 1 , 0 ) ) ) |
32 |
10 17 31
|
3eqtrd |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( V ` ( F ++ <" K "> ) ) = ( sum_ j e. ( 1 ..^ ( # ` F ) ) if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) + if ( ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( ( # ` F ) - 1 ) ) , 1 , 0 ) ) ) |
33 |
32
|
adantlr |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( V ` ( F ++ <" K "> ) ) = ( sum_ j e. ( 1 ..^ ( # ` F ) ) if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) + if ( ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( ( # ` F ) - 1 ) ) , 1 , 0 ) ) ) |
34 |
|
simpl |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> F e. ( Word RR \ { (/) } ) ) |
35 |
34
|
eldifad |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> F e. Word RR ) |
36 |
35
|
adantr |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ..^ ( # ` F ) ) ) -> F e. Word RR ) |
37 |
|
simplr |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ..^ ( # ` F ) ) ) -> K e. RR ) |
38 |
|
fzo0ss1 |
|- ( 1 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` F ) ) |
39 |
38
|
a1i |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( 1 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
40 |
39
|
sselda |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ..^ ( # ` F ) ) ) -> j e. ( 0 ..^ ( # ` F ) ) ) |
41 |
1 2 3 4
|
signstfvp |
|- ( ( F e. Word RR /\ K e. RR /\ j e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ <" K "> ) ) ` j ) = ( ( T ` F ) ` j ) ) |
42 |
36 37 40 41
|
syl3anc |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ <" K "> ) ) ` j ) = ( ( T ` F ) ` j ) ) |
43 |
|
elfzoel2 |
|- ( j e. ( 1 ..^ ( # ` F ) ) -> ( # ` F ) e. ZZ ) |
44 |
43
|
adantl |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ..^ ( # ` F ) ) ) -> ( # ` F ) e. ZZ ) |
45 |
|
1nn0 |
|- 1 e. NN0 |
46 |
|
eluzmn |
|- ( ( ( # ` F ) e. ZZ /\ 1 e. NN0 ) -> ( # ` F ) e. ( ZZ>= ` ( ( # ` F ) - 1 ) ) ) |
47 |
44 45 46
|
sylancl |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ..^ ( # ` F ) ) ) -> ( # ` F ) e. ( ZZ>= ` ( ( # ` F ) - 1 ) ) ) |
48 |
|
fzoss2 |
|- ( ( # ` F ) e. ( ZZ>= ` ( ( # ` F ) - 1 ) ) -> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
49 |
47 48
|
syl |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ..^ ( # ` F ) ) ) -> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
50 |
|
elfzo1elm1fzo0 |
|- ( j e. ( 1 ..^ ( # ` F ) ) -> ( j - 1 ) e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) |
51 |
50
|
adantl |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ..^ ( # ` F ) ) ) -> ( j - 1 ) e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) |
52 |
49 51
|
sseldd |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ..^ ( # ` F ) ) ) -> ( j - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
53 |
1 2 3 4
|
signstfvp |
|- ( ( F e. Word RR /\ K e. RR /\ ( j - 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) = ( ( T ` F ) ` ( j - 1 ) ) ) |
54 |
36 37 52 53
|
syl3anc |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) = ( ( T ` F ) ` ( j - 1 ) ) ) |
55 |
42 54
|
neeq12d |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ..^ ( # ` F ) ) ) -> ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) <-> ( ( T ` F ) ` j ) =/= ( ( T ` F ) ` ( j - 1 ) ) ) ) |
56 |
55
|
ifbid |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ j e. ( 1 ..^ ( # ` F ) ) ) -> if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) = if ( ( ( T ` F ) ` j ) =/= ( ( T ` F ) ` ( j - 1 ) ) , 1 , 0 ) ) |
57 |
56
|
sumeq2dv |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> sum_ j e. ( 1 ..^ ( # ` F ) ) if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) = sum_ j e. ( 1 ..^ ( # ` F ) ) if ( ( ( T ` F ) ` j ) =/= ( ( T ` F ) ` ( j - 1 ) ) , 1 , 0 ) ) |
58 |
1 2 3 4
|
signsvvfval |
|- ( F e. Word RR -> ( V ` F ) = sum_ j e. ( 1 ..^ ( # ` F ) ) if ( ( ( T ` F ) ` j ) =/= ( ( T ` F ) ` ( j - 1 ) ) , 1 , 0 ) ) |
59 |
35 58
|
syl |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( V ` F ) = sum_ j e. ( 1 ..^ ( # ` F ) ) if ( ( ( T ` F ) ` j ) =/= ( ( T ` F ) ` ( j - 1 ) ) , 1 , 0 ) ) |
60 |
57 59
|
eqtr4d |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> sum_ j e. ( 1 ..^ ( # ` F ) ) if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) = ( V ` F ) ) |
61 |
60
|
adantlr |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> sum_ j e. ( 1 ..^ ( # ` F ) ) if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) = ( V ` F ) ) |
62 |
1 2 3 4
|
signstfvn |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) = ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) .+^ ( sgn ` K ) ) ) |
63 |
62
|
adantlr |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) = ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) .+^ ( sgn ` K ) ) ) |
64 |
35
|
adantlr |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> F e. Word RR ) |
65 |
|
simpr |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> K e. RR ) |
66 |
|
fzo0end |
|- ( ( # ` F ) e. NN -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
67 |
20 66
|
syl |
|- ( F e. ( Word RR \ { (/) } ) -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
68 |
67
|
ad2antrr |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
69 |
1 2 3 4
|
signstfvp |
|- ( ( F e. Word RR /\ K e. RR /\ ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ <" K "> ) ) ` ( ( # ` F ) - 1 ) ) = ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) ) |
70 |
64 65 68 69
|
syl3anc |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( ( T ` ( F ++ <" K "> ) ) ` ( ( # ` F ) - 1 ) ) = ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) ) |
71 |
63 70
|
neeq12d |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( ( # ` F ) - 1 ) ) <-> ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) .+^ ( sgn ` K ) ) =/= ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) ) ) |
72 |
1 2 3 4
|
signstfvcl |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) e. { -u 1 , 1 } ) |
73 |
68 72
|
syldan |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) e. { -u 1 , 1 } ) |
74 |
|
rexr |
|- ( K e. RR -> K e. RR* ) |
75 |
|
sgncl |
|- ( K e. RR* -> ( sgn ` K ) e. { -u 1 , 0 , 1 } ) |
76 |
74 75
|
syl |
|- ( K e. RR -> ( sgn ` K ) e. { -u 1 , 0 , 1 } ) |
77 |
76
|
adantl |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( sgn ` K ) e. { -u 1 , 0 , 1 } ) |
78 |
1 2
|
signswch |
|- ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) e. { -u 1 , 1 } /\ ( sgn ` K ) e. { -u 1 , 0 , 1 } ) -> ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) .+^ ( sgn ` K ) ) =/= ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) <-> ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. ( sgn ` K ) ) < 0 ) ) |
79 |
73 77 78
|
syl2anc |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) .+^ ( sgn ` K ) ) =/= ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) <-> ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. ( sgn ` K ) ) < 0 ) ) |
80 |
65
|
rexrd |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> K e. RR* ) |
81 |
|
sgnsgn |
|- ( K e. RR* -> ( sgn ` ( sgn ` K ) ) = ( sgn ` K ) ) |
82 |
80 81
|
syl |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( sgn ` ( sgn ` K ) ) = ( sgn ` K ) ) |
83 |
82
|
oveq2d |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( ( sgn ` ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) ) x. ( sgn ` ( sgn ` K ) ) ) = ( ( sgn ` ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) ) x. ( sgn ` K ) ) ) |
84 |
83
|
breq1d |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( ( ( sgn ` ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) ) x. ( sgn ` ( sgn ` K ) ) ) < 0 <-> ( ( sgn ` ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) ) x. ( sgn ` K ) ) < 0 ) ) |
85 |
|
neg1rr |
|- -u 1 e. RR |
86 |
|
1re |
|- 1 e. RR |
87 |
|
prssi |
|- ( ( -u 1 e. RR /\ 1 e. RR ) -> { -u 1 , 1 } C_ RR ) |
88 |
85 86 87
|
mp2an |
|- { -u 1 , 1 } C_ RR |
89 |
88 73
|
sselid |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) e. RR ) |
90 |
|
sgnclre |
|- ( K e. RR -> ( sgn ` K ) e. RR ) |
91 |
90
|
adantl |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( sgn ` K ) e. RR ) |
92 |
|
sgnmulsgn |
|- ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) e. RR /\ ( sgn ` K ) e. RR ) -> ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. ( sgn ` K ) ) < 0 <-> ( ( sgn ` ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) ) x. ( sgn ` ( sgn ` K ) ) ) < 0 ) ) |
93 |
89 91 92
|
syl2anc |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. ( sgn ` K ) ) < 0 <-> ( ( sgn ` ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) ) x. ( sgn ` ( sgn ` K ) ) ) < 0 ) ) |
94 |
|
sgnmulsgn |
|- ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) e. RR /\ K e. RR ) -> ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. K ) < 0 <-> ( ( sgn ` ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) ) x. ( sgn ` K ) ) < 0 ) ) |
95 |
89 94
|
sylancom |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. K ) < 0 <-> ( ( sgn ` ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) ) x. ( sgn ` K ) ) < 0 ) ) |
96 |
84 93 95
|
3bitr4d |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. ( sgn ` K ) ) < 0 <-> ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. K ) < 0 ) ) |
97 |
71 79 96
|
3bitrd |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( ( # ` F ) - 1 ) ) <-> ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. K ) < 0 ) ) |
98 |
97
|
ifbid |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> if ( ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( ( # ` F ) - 1 ) ) , 1 , 0 ) = if ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. K ) < 0 , 1 , 0 ) ) |
99 |
61 98
|
oveq12d |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( sum_ j e. ( 1 ..^ ( # ` F ) ) if ( ( ( T ` ( F ++ <" K "> ) ) ` j ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( j - 1 ) ) , 1 , 0 ) + if ( ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) =/= ( ( T ` ( F ++ <" K "> ) ) ` ( ( # ` F ) - 1 ) ) , 1 , 0 ) ) = ( ( V ` F ) + if ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. K ) < 0 , 1 , 0 ) ) ) |
100 |
33 99
|
eqtrd |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ K e. RR ) -> ( V ` ( F ++ <" K "> ) ) = ( ( V ` F ) + if ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. K ) < 0 , 1 , 0 ) ) ) |