| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p |  |-  .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) | 
						
							| 2 |  | signsv.w |  |-  W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } | 
						
							| 3 |  | signsv.t |  |-  T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v |  |-  V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) | 
						
							| 5 |  | simpll |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> F e. ( Word RR \ { (/) } ) ) | 
						
							| 6 | 5 | eldifad |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> F e. Word RR ) | 
						
							| 7 | 1 2 3 4 | signstcl |  |-  ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` F ) ` N ) e. { -u 1 , 0 , 1 } ) | 
						
							| 8 | 6 7 | sylancom |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` F ) ` N ) e. { -u 1 , 0 , 1 } ) | 
						
							| 9 | 1 2 3 4 | signstfvneq0 |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` F ) ` N ) =/= 0 ) | 
						
							| 10 |  | eldifsn |  |-  ( ( ( T ` F ) ` N ) e. ( { -u 1 , 0 , 1 } \ { 0 } ) <-> ( ( ( T ` F ) ` N ) e. { -u 1 , 0 , 1 } /\ ( ( T ` F ) ` N ) =/= 0 ) ) | 
						
							| 11 | 8 9 10 | sylanbrc |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` F ) ` N ) e. ( { -u 1 , 0 , 1 } \ { 0 } ) ) | 
						
							| 12 |  | tpcomb |  |-  { -u 1 , 0 , 1 } = { -u 1 , 1 , 0 } | 
						
							| 13 | 12 | difeq1i |  |-  ( { -u 1 , 0 , 1 } \ { 0 } ) = ( { -u 1 , 1 , 0 } \ { 0 } ) | 
						
							| 14 |  | neg1ne0 |  |-  -u 1 =/= 0 | 
						
							| 15 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 16 |  | diftpsn3 |  |-  ( ( -u 1 =/= 0 /\ 1 =/= 0 ) -> ( { -u 1 , 1 , 0 } \ { 0 } ) = { -u 1 , 1 } ) | 
						
							| 17 | 14 15 16 | mp2an |  |-  ( { -u 1 , 1 , 0 } \ { 0 } ) = { -u 1 , 1 } | 
						
							| 18 | 13 17 | eqtri |  |-  ( { -u 1 , 0 , 1 } \ { 0 } ) = { -u 1 , 1 } | 
						
							| 19 | 11 18 | eleqtrdi |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` F ) ` N ) e. { -u 1 , 1 } ) |