Metamath Proof Explorer


Theorem signstfvcl

Description: Closure of the zero skipping sign in case the first letter is not zero. (Contributed by Thierry Arnoux, 10-Oct-2018)

Ref Expression
Hypotheses signsv.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
signsv.w W = Base ndx 1 0 1 + ndx ˙
signsv.t T = f Word n 0 ..^ f W i = 0 n sgn f i
signsv.v V = f Word j 1 ..^ f if T f j T f j 1 1 0
Assertion signstfvcl F Word F 0 0 N 0 ..^ F T F N 1 1

Proof

Step Hyp Ref Expression
1 signsv.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
2 signsv.w W = Base ndx 1 0 1 + ndx ˙
3 signsv.t T = f Word n 0 ..^ f W i = 0 n sgn f i
4 signsv.v V = f Word j 1 ..^ f if T f j T f j 1 1 0
5 simpll F Word F 0 0 N 0 ..^ F F Word
6 5 eldifad F Word F 0 0 N 0 ..^ F F Word
7 1 2 3 4 signstcl F Word N 0 ..^ F T F N 1 0 1
8 6 7 sylancom F Word F 0 0 N 0 ..^ F T F N 1 0 1
9 1 2 3 4 signstfvneq0 F Word F 0 0 N 0 ..^ F T F N 0
10 eldifsn T F N 1 0 1 0 T F N 1 0 1 T F N 0
11 8 9 10 sylanbrc F Word F 0 0 N 0 ..^ F T F N 1 0 1 0
12 tpcomb 1 0 1 = 1 1 0
13 12 difeq1i 1 0 1 0 = 1 1 0 0
14 neg1ne0 1 0
15 ax-1ne0 1 0
16 diftpsn3 1 0 1 0 1 1 0 0 = 1 1
17 14 15 16 mp2an 1 1 0 0 = 1 1
18 13 17 eqtri 1 0 1 0 = 1 1
19 11 18 eleqtrdi F Word F 0 0 N 0 ..^ F T F N 1 1