| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p | ⊢  ⨣   =  ( 𝑎  ∈  { - 1 ,  0 ,  1 } ,  𝑏  ∈  { - 1 ,  0 ,  1 }  ↦  if ( 𝑏  =  0 ,  𝑎 ,  𝑏 ) ) | 
						
							| 2 |  | signsv.w | ⊢ 𝑊  =  { 〈 ( Base ‘ ndx ) ,  { - 1 ,  0 ,  1 } 〉 ,  〈 ( +g ‘ ndx ) ,   ⨣  〉 } | 
						
							| 3 |  | signsv.t | ⊢ 𝑇  =  ( 𝑓  ∈  Word  ℝ  ↦  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) )  ↦  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑛 )  ↦  ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v | ⊢ 𝑉  =  ( 𝑓  ∈  Word  ℝ  ↦  Σ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 ) ) | 
						
							| 5 |  | simpll | ⊢ ( ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  𝐹  ∈  ( Word  ℝ  ∖  { ∅ } ) ) | 
						
							| 6 | 5 | eldifad | ⊢ ( ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  𝐹  ∈  Word  ℝ ) | 
						
							| 7 | 1 2 3 4 | signstcl | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 )  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 8 | 6 7 | sylancom | ⊢ ( ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 )  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 9 | 1 2 3 4 | signstfvneq0 | ⊢ ( ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 )  ≠  0 ) | 
						
							| 10 |  | eldifsn | ⊢ ( ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 )  ∈  ( { - 1 ,  0 ,  1 }  ∖  { 0 } )  ↔  ( ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 )  ∈  { - 1 ,  0 ,  1 }  ∧  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 )  ≠  0 ) ) | 
						
							| 11 | 8 9 10 | sylanbrc | ⊢ ( ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 )  ∈  ( { - 1 ,  0 ,  1 }  ∖  { 0 } ) ) | 
						
							| 12 |  | tpcomb | ⊢ { - 1 ,  0 ,  1 }  =  { - 1 ,  1 ,  0 } | 
						
							| 13 | 12 | difeq1i | ⊢ ( { - 1 ,  0 ,  1 }  ∖  { 0 } )  =  ( { - 1 ,  1 ,  0 }  ∖  { 0 } ) | 
						
							| 14 |  | neg1ne0 | ⊢ - 1  ≠  0 | 
						
							| 15 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 16 |  | diftpsn3 | ⊢ ( ( - 1  ≠  0  ∧  1  ≠  0 )  →  ( { - 1 ,  1 ,  0 }  ∖  { 0 } )  =  { - 1 ,  1 } ) | 
						
							| 17 | 14 15 16 | mp2an | ⊢ ( { - 1 ,  1 ,  0 }  ∖  { 0 } )  =  { - 1 ,  1 } | 
						
							| 18 | 13 17 | eqtri | ⊢ ( { - 1 ,  0 ,  1 }  ∖  { 0 } )  =  { - 1 ,  1 } | 
						
							| 19 | 11 18 | eleqtrdi | ⊢ ( ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 )  ∈  { - 1 ,  1 } ) |