Metamath Proof Explorer


Theorem signstfvcl

Description: Closure of the zero skipping sign in case the first letter is not zero. (Contributed by Thierry Arnoux, 10-Oct-2018)

Ref Expression
Hypotheses signsv.p âŠĒ âĻĢ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } â†Ķ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
signsv.w âŠĒ 𝑊 = { âŸĻ ( Base ‘ ndx ) , { - 1 , 0 , 1 } âŸĐ , âŸĻ ( +g ‘ ndx ) , âĻĢ âŸĐ }
signsv.t âŠĒ 𝑇 = ( 𝑓 ∈ Word ℝ â†Ķ ( 𝑛 ∈ ( 0 ..^ ( â™Ŋ ‘ 𝑓 ) ) â†Ķ ( 𝑊 ÎĢg ( 𝑖 ∈ ( 0 ... 𝑛 ) â†Ķ ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) )
signsv.v âŠĒ 𝑉 = ( 𝑓 ∈ Word ℝ â†Ķ ÎĢ ð‘— ∈ ( 1 ..^ ( â™Ŋ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) )
Assertion signstfvcl ( ( ( ðđ ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( ðđ ‘ 0 ) ≠ 0 ) ∧ 𝑁 ∈ ( 0 ..^ ( â™Ŋ ‘ ðđ ) ) ) → ( ( 𝑇 ‘ ðđ ) ‘ 𝑁 ) ∈ { - 1 , 1 } )

Proof

Step Hyp Ref Expression
1 signsv.p âŠĒ âĻĢ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } â†Ķ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
2 signsv.w âŠĒ 𝑊 = { âŸĻ ( Base ‘ ndx ) , { - 1 , 0 , 1 } âŸĐ , âŸĻ ( +g ‘ ndx ) , âĻĢ âŸĐ }
3 signsv.t âŠĒ 𝑇 = ( 𝑓 ∈ Word ℝ â†Ķ ( 𝑛 ∈ ( 0 ..^ ( â™Ŋ ‘ 𝑓 ) ) â†Ķ ( 𝑊 ÎĢg ( 𝑖 ∈ ( 0 ... 𝑛 ) â†Ķ ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) )
4 signsv.v âŠĒ 𝑉 = ( 𝑓 ∈ Word ℝ â†Ķ ÎĢ ð‘— ∈ ( 1 ..^ ( â™Ŋ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) )
5 simpll âŠĒ ( ( ( ðđ ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( ðđ ‘ 0 ) ≠ 0 ) ∧ 𝑁 ∈ ( 0 ..^ ( â™Ŋ ‘ ðđ ) ) ) → ðđ ∈ ( Word ℝ ∖ { ∅ } ) )
6 5 eldifad âŠĒ ( ( ( ðđ ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( ðđ ‘ 0 ) ≠ 0 ) ∧ 𝑁 ∈ ( 0 ..^ ( â™Ŋ ‘ ðđ ) ) ) → ðđ ∈ Word ℝ )
7 1 2 3 4 signstcl âŠĒ ( ( ðđ ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( â™Ŋ ‘ ðđ ) ) ) → ( ( 𝑇 ‘ ðđ ) ‘ 𝑁 ) ∈ { - 1 , 0 , 1 } )
8 6 7 sylancom âŠĒ ( ( ( ðđ ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( ðđ ‘ 0 ) ≠ 0 ) ∧ 𝑁 ∈ ( 0 ..^ ( â™Ŋ ‘ ðđ ) ) ) → ( ( 𝑇 ‘ ðđ ) ‘ 𝑁 ) ∈ { - 1 , 0 , 1 } )
9 1 2 3 4 signstfvneq0 âŠĒ ( ( ( ðđ ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( ðđ ‘ 0 ) ≠ 0 ) ∧ 𝑁 ∈ ( 0 ..^ ( â™Ŋ ‘ ðđ ) ) ) → ( ( 𝑇 ‘ ðđ ) ‘ 𝑁 ) ≠ 0 )
10 eldifsn âŠĒ ( ( ( 𝑇 ‘ ðđ ) ‘ 𝑁 ) ∈ ( { - 1 , 0 , 1 } ∖ { 0 } ) ↔ ( ( ( 𝑇 ‘ ðđ ) ‘ 𝑁 ) ∈ { - 1 , 0 , 1 } ∧ ( ( 𝑇 ‘ ðđ ) ‘ 𝑁 ) ≠ 0 ) )
11 8 9 10 sylanbrc âŠĒ ( ( ( ðđ ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( ðđ ‘ 0 ) ≠ 0 ) ∧ 𝑁 ∈ ( 0 ..^ ( â™Ŋ ‘ ðđ ) ) ) → ( ( 𝑇 ‘ ðđ ) ‘ 𝑁 ) ∈ ( { - 1 , 0 , 1 } ∖ { 0 } ) )
12 tpcomb âŠĒ { - 1 , 0 , 1 } = { - 1 , 1 , 0 }
13 12 difeq1i âŠĒ ( { - 1 , 0 , 1 } ∖ { 0 } ) = ( { - 1 , 1 , 0 } ∖ { 0 } )
14 neg1ne0 âŠĒ - 1 ≠ 0
15 ax-1ne0 âŠĒ 1 ≠ 0
16 diftpsn3 âŠĒ ( ( - 1 ≠ 0 ∧ 1 ≠ 0 ) → ( { - 1 , 1 , 0 } ∖ { 0 } ) = { - 1 , 1 } )
17 14 15 16 mp2an âŠĒ ( { - 1 , 1 , 0 } ∖ { 0 } ) = { - 1 , 1 }
18 13 17 eqtri âŠĒ ( { - 1 , 0 , 1 } ∖ { 0 } ) = { - 1 , 1 }
19 11 18 eleqtrdi âŠĒ ( ( ( ðđ ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( ðđ ‘ 0 ) ≠ 0 ) ∧ 𝑁 ∈ ( 0 ..^ ( â™Ŋ ‘ ðđ ) ) ) → ( ( 𝑇 ‘ ðđ ) ‘ 𝑁 ) ∈ { - 1 , 1 } )