| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p | ⊢  ⨣   =  ( 𝑎  ∈  { - 1 ,  0 ,  1 } ,  𝑏  ∈  { - 1 ,  0 ,  1 }  ↦  if ( 𝑏  =  0 ,  𝑎 ,  𝑏 ) ) | 
						
							| 2 |  | signsv.w | ⊢ 𝑊  =  { 〈 ( Base ‘ ndx ) ,  { - 1 ,  0 ,  1 } 〉 ,  〈 ( +g ‘ ndx ) ,   ⨣  〉 } | 
						
							| 3 |  | signsv.t | ⊢ 𝑇  =  ( 𝑓  ∈  Word  ℝ  ↦  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) )  ↦  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑛 )  ↦  ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v | ⊢ 𝑉  =  ( 𝑓  ∈  Word  ℝ  ↦  Σ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 ) ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑔  =  ∅  →  ( 𝐹  ++  𝑔 )  =  ( 𝐹  ++  ∅ ) ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( 𝑔  =  ∅  →  ( 𝑇 ‘ ( 𝐹  ++  𝑔 ) )  =  ( 𝑇 ‘ ( 𝐹  ++  ∅ ) ) ) | 
						
							| 7 | 6 | fveq1d | ⊢ ( 𝑔  =  ∅  →  ( ( 𝑇 ‘ ( 𝐹  ++  𝑔 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ ( 𝐹  ++  ∅ ) ) ‘ 𝑁 ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝑔  =  ∅  →  ( ( ( 𝑇 ‘ ( 𝐹  ++  𝑔 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 )  ↔  ( ( 𝑇 ‘ ( 𝐹  ++  ∅ ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ) | 
						
							| 9 | 8 | imbi2d | ⊢ ( 𝑔  =  ∅  →  ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ ( 𝐹  ++  𝑔 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) )  ↔  ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ ( 𝐹  ++  ∅ ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑔  =  𝑒  →  ( 𝐹  ++  𝑔 )  =  ( 𝐹  ++  𝑒 ) ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝑔  =  𝑒  →  ( 𝑇 ‘ ( 𝐹  ++  𝑔 ) )  =  ( 𝑇 ‘ ( 𝐹  ++  𝑒 ) ) ) | 
						
							| 12 | 11 | fveq1d | ⊢ ( 𝑔  =  𝑒  →  ( ( 𝑇 ‘ ( 𝐹  ++  𝑔 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ ( 𝐹  ++  𝑒 ) ) ‘ 𝑁 ) ) | 
						
							| 13 | 12 | eqeq1d | ⊢ ( 𝑔  =  𝑒  →  ( ( ( 𝑇 ‘ ( 𝐹  ++  𝑔 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 )  ↔  ( ( 𝑇 ‘ ( 𝐹  ++  𝑒 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ) | 
						
							| 14 | 13 | imbi2d | ⊢ ( 𝑔  =  𝑒  →  ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ ( 𝐹  ++  𝑔 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) )  ↔  ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ ( 𝐹  ++  𝑒 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ) ) | 
						
							| 15 |  | oveq2 | ⊢ ( 𝑔  =  ( 𝑒  ++  〈“ 𝑘 ”〉 )  →  ( 𝐹  ++  𝑔 )  =  ( 𝐹  ++  ( 𝑒  ++  〈“ 𝑘 ”〉 ) ) ) | 
						
							| 16 | 15 | fveq2d | ⊢ ( 𝑔  =  ( 𝑒  ++  〈“ 𝑘 ”〉 )  →  ( 𝑇 ‘ ( 𝐹  ++  𝑔 ) )  =  ( 𝑇 ‘ ( 𝐹  ++  ( 𝑒  ++  〈“ 𝑘 ”〉 ) ) ) ) | 
						
							| 17 | 16 | fveq1d | ⊢ ( 𝑔  =  ( 𝑒  ++  〈“ 𝑘 ”〉 )  →  ( ( 𝑇 ‘ ( 𝐹  ++  𝑔 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ ( 𝐹  ++  ( 𝑒  ++  〈“ 𝑘 ”〉 ) ) ) ‘ 𝑁 ) ) | 
						
							| 18 | 17 | eqeq1d | ⊢ ( 𝑔  =  ( 𝑒  ++  〈“ 𝑘 ”〉 )  →  ( ( ( 𝑇 ‘ ( 𝐹  ++  𝑔 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 )  ↔  ( ( 𝑇 ‘ ( 𝐹  ++  ( 𝑒  ++  〈“ 𝑘 ”〉 ) ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ) | 
						
							| 19 | 18 | imbi2d | ⊢ ( 𝑔  =  ( 𝑒  ++  〈“ 𝑘 ”〉 )  →  ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ ( 𝐹  ++  𝑔 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) )  ↔  ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ ( 𝐹  ++  ( 𝑒  ++  〈“ 𝑘 ”〉 ) ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ) ) | 
						
							| 20 |  | oveq2 | ⊢ ( 𝑔  =  𝐺  →  ( 𝐹  ++  𝑔 )  =  ( 𝐹  ++  𝐺 ) ) | 
						
							| 21 | 20 | fveq2d | ⊢ ( 𝑔  =  𝐺  →  ( 𝑇 ‘ ( 𝐹  ++  𝑔 ) )  =  ( 𝑇 ‘ ( 𝐹  ++  𝐺 ) ) ) | 
						
							| 22 | 21 | fveq1d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑇 ‘ ( 𝐹  ++  𝑔 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ ( 𝐹  ++  𝐺 ) ) ‘ 𝑁 ) ) | 
						
							| 23 | 22 | eqeq1d | ⊢ ( 𝑔  =  𝐺  →  ( ( ( 𝑇 ‘ ( 𝐹  ++  𝑔 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 )  ↔  ( ( 𝑇 ‘ ( 𝐹  ++  𝐺 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ) | 
						
							| 24 | 23 | imbi2d | ⊢ ( 𝑔  =  𝐺  →  ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ ( 𝐹  ++  𝑔 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) )  ↔  ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ ( 𝐹  ++  𝐺 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ) ) | 
						
							| 25 |  | ccatrid | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( 𝐹  ++  ∅ )  =  𝐹 ) | 
						
							| 26 | 25 | fveq2d | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( 𝑇 ‘ ( 𝐹  ++  ∅ ) )  =  ( 𝑇 ‘ 𝐹 ) ) | 
						
							| 27 | 26 | fveq1d | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( ( 𝑇 ‘ ( 𝐹  ++  ∅ ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ ( 𝐹  ++  ∅ ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) | 
						
							| 29 |  | s1cl | ⊢ ( 𝑘  ∈  ℝ  →  〈“ 𝑘 ”〉  ∈  Word  ℝ ) | 
						
							| 30 |  | ccatass | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑒  ∈  Word  ℝ  ∧  〈“ 𝑘 ”〉  ∈  Word  ℝ )  →  ( ( 𝐹  ++  𝑒 )  ++  〈“ 𝑘 ”〉 )  =  ( 𝐹  ++  ( 𝑒  ++  〈“ 𝑘 ”〉 ) ) ) | 
						
							| 31 | 29 30 | syl3an3 | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑒  ∈  Word  ℝ  ∧  𝑘  ∈  ℝ )  →  ( ( 𝐹  ++  𝑒 )  ++  〈“ 𝑘 ”〉 )  =  ( 𝐹  ++  ( 𝑒  ++  〈“ 𝑘 ”〉 ) ) ) | 
						
							| 32 | 31 | 3expb | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  ( 𝑒  ∈  Word  ℝ  ∧  𝑘  ∈  ℝ ) )  →  ( ( 𝐹  ++  𝑒 )  ++  〈“ 𝑘 ”〉 )  =  ( 𝐹  ++  ( 𝑒  ++  〈“ 𝑘 ”〉 ) ) ) | 
						
							| 33 | 32 | adantlr | ⊢ ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( 𝑒  ∈  Word  ℝ  ∧  𝑘  ∈  ℝ ) )  →  ( ( 𝐹  ++  𝑒 )  ++  〈“ 𝑘 ”〉 )  =  ( 𝐹  ++  ( 𝑒  ++  〈“ 𝑘 ”〉 ) ) ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( 𝑒  ∈  Word  ℝ  ∧  𝑘  ∈  ℝ ) )  →  ( 𝑇 ‘ ( ( 𝐹  ++  𝑒 )  ++  〈“ 𝑘 ”〉 ) )  =  ( 𝑇 ‘ ( 𝐹  ++  ( 𝑒  ++  〈“ 𝑘 ”〉 ) ) ) ) | 
						
							| 35 | 34 | fveq1d | ⊢ ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( 𝑒  ∈  Word  ℝ  ∧  𝑘  ∈  ℝ ) )  →  ( ( 𝑇 ‘ ( ( 𝐹  ++  𝑒 )  ++  〈“ 𝑘 ”〉 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ ( 𝐹  ++  ( 𝑒  ++  〈“ 𝑘 ”〉 ) ) ) ‘ 𝑁 ) ) | 
						
							| 36 |  | ccatcl | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑒  ∈  Word  ℝ )  →  ( 𝐹  ++  𝑒 )  ∈  Word  ℝ ) | 
						
							| 37 | 36 | ad2ant2r | ⊢ ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( 𝑒  ∈  Word  ℝ  ∧  𝑘  ∈  ℝ ) )  →  ( 𝐹  ++  𝑒 )  ∈  Word  ℝ ) | 
						
							| 38 |  | simprr | ⊢ ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( 𝑒  ∈  Word  ℝ  ∧  𝑘  ∈  ℝ ) )  →  𝑘  ∈  ℝ ) | 
						
							| 39 |  | lencl | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 40 | 39 | nn0zd | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( ♯ ‘ 𝐹 )  ∈  ℤ ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑒  ∈  Word  ℝ )  →  ( ♯ ‘ 𝐹 )  ∈  ℤ ) | 
						
							| 42 |  | lencl | ⊢ ( ( 𝐹  ++  𝑒 )  ∈  Word  ℝ  →  ( ♯ ‘ ( 𝐹  ++  𝑒 ) )  ∈  ℕ0 ) | 
						
							| 43 | 36 42 | syl | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑒  ∈  Word  ℝ )  →  ( ♯ ‘ ( 𝐹  ++  𝑒 ) )  ∈  ℕ0 ) | 
						
							| 44 | 43 | nn0zd | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑒  ∈  Word  ℝ )  →  ( ♯ ‘ ( 𝐹  ++  𝑒 ) )  ∈  ℤ ) | 
						
							| 45 | 39 | nn0red | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( ♯ ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 46 |  | lencl | ⊢ ( 𝑒  ∈  Word  ℝ  →  ( ♯ ‘ 𝑒 )  ∈  ℕ0 ) | 
						
							| 47 |  | nn0addge1 | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℝ  ∧  ( ♯ ‘ 𝑒 )  ∈  ℕ0 )  →  ( ♯ ‘ 𝐹 )  ≤  ( ( ♯ ‘ 𝐹 )  +  ( ♯ ‘ 𝑒 ) ) ) | 
						
							| 48 | 45 46 47 | syl2an | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑒  ∈  Word  ℝ )  →  ( ♯ ‘ 𝐹 )  ≤  ( ( ♯ ‘ 𝐹 )  +  ( ♯ ‘ 𝑒 ) ) ) | 
						
							| 49 |  | ccatlen | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑒  ∈  Word  ℝ )  →  ( ♯ ‘ ( 𝐹  ++  𝑒 ) )  =  ( ( ♯ ‘ 𝐹 )  +  ( ♯ ‘ 𝑒 ) ) ) | 
						
							| 50 | 48 49 | breqtrrd | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑒  ∈  Word  ℝ )  →  ( ♯ ‘ 𝐹 )  ≤  ( ♯ ‘ ( 𝐹  ++  𝑒 ) ) ) | 
						
							| 51 |  | eluz2 | ⊢ ( ( ♯ ‘ ( 𝐹  ++  𝑒 ) )  ∈  ( ℤ≥ ‘ ( ♯ ‘ 𝐹 ) )  ↔  ( ( ♯ ‘ 𝐹 )  ∈  ℤ  ∧  ( ♯ ‘ ( 𝐹  ++  𝑒 ) )  ∈  ℤ  ∧  ( ♯ ‘ 𝐹 )  ≤  ( ♯ ‘ ( 𝐹  ++  𝑒 ) ) ) ) | 
						
							| 52 | 41 44 50 51 | syl3anbrc | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑒  ∈  Word  ℝ )  →  ( ♯ ‘ ( 𝐹  ++  𝑒 ) )  ∈  ( ℤ≥ ‘ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 53 |  | fzoss2 | ⊢ ( ( ♯ ‘ ( 𝐹  ++  𝑒 ) )  ∈  ( ℤ≥ ‘ ( ♯ ‘ 𝐹 ) )  →  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ⊆  ( 0 ..^ ( ♯ ‘ ( 𝐹  ++  𝑒 ) ) ) ) | 
						
							| 54 | 52 53 | syl | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑒  ∈  Word  ℝ )  →  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ⊆  ( 0 ..^ ( ♯ ‘ ( 𝐹  ++  𝑒 ) ) ) ) | 
						
							| 55 | 54 | ad2ant2r | ⊢ ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( 𝑒  ∈  Word  ℝ  ∧  𝑘  ∈  ℝ ) )  →  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ⊆  ( 0 ..^ ( ♯ ‘ ( 𝐹  ++  𝑒 ) ) ) ) | 
						
							| 56 |  | simplr | ⊢ ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( 𝑒  ∈  Word  ℝ  ∧  𝑘  ∈  ℝ ) )  →  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 57 | 55 56 | sseldd | ⊢ ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( 𝑒  ∈  Word  ℝ  ∧  𝑘  ∈  ℝ ) )  →  𝑁  ∈  ( 0 ..^ ( ♯ ‘ ( 𝐹  ++  𝑒 ) ) ) ) | 
						
							| 58 | 1 2 3 4 | signstfvp | ⊢ ( ( ( 𝐹  ++  𝑒 )  ∈  Word  ℝ  ∧  𝑘  ∈  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ ( 𝐹  ++  𝑒 ) ) ) )  →  ( ( 𝑇 ‘ ( ( 𝐹  ++  𝑒 )  ++  〈“ 𝑘 ”〉 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ ( 𝐹  ++  𝑒 ) ) ‘ 𝑁 ) ) | 
						
							| 59 | 37 38 57 58 | syl3anc | ⊢ ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( 𝑒  ∈  Word  ℝ  ∧  𝑘  ∈  ℝ ) )  →  ( ( 𝑇 ‘ ( ( 𝐹  ++  𝑒 )  ++  〈“ 𝑘 ”〉 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ ( 𝐹  ++  𝑒 ) ) ‘ 𝑁 ) ) | 
						
							| 60 | 35 59 | eqtr3d | ⊢ ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( 𝑒  ∈  Word  ℝ  ∧  𝑘  ∈  ℝ ) )  →  ( ( 𝑇 ‘ ( 𝐹  ++  ( 𝑒  ++  〈“ 𝑘 ”〉 ) ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ ( 𝐹  ++  𝑒 ) ) ‘ 𝑁 ) ) | 
						
							| 61 |  | id | ⊢ ( ( ( 𝑇 ‘ ( 𝐹  ++  𝑒 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 )  →  ( ( 𝑇 ‘ ( 𝐹  ++  𝑒 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) | 
						
							| 62 | 60 61 | sylan9eq | ⊢ ( ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( 𝑒  ∈  Word  ℝ  ∧  𝑘  ∈  ℝ ) )  ∧  ( ( 𝑇 ‘ ( 𝐹  ++  𝑒 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) )  →  ( ( 𝑇 ‘ ( 𝐹  ++  ( 𝑒  ++  〈“ 𝑘 ”〉 ) ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) | 
						
							| 63 | 62 | ex | ⊢ ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( 𝑒  ∈  Word  ℝ  ∧  𝑘  ∈  ℝ ) )  →  ( ( ( 𝑇 ‘ ( 𝐹  ++  𝑒 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 )  →  ( ( 𝑇 ‘ ( 𝐹  ++  ( 𝑒  ++  〈“ 𝑘 ”〉 ) ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ) | 
						
							| 64 | 63 | expcom | ⊢ ( ( 𝑒  ∈  Word  ℝ  ∧  𝑘  ∈  ℝ )  →  ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( ( 𝑇 ‘ ( 𝐹  ++  𝑒 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 )  →  ( ( 𝑇 ‘ ( 𝐹  ++  ( 𝑒  ++  〈“ 𝑘 ”〉 ) ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ) ) | 
						
							| 65 | 64 | a2d | ⊢ ( ( 𝑒  ∈  Word  ℝ  ∧  𝑘  ∈  ℝ )  →  ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ ( 𝐹  ++  𝑒 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) )  →  ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ ( 𝐹  ++  ( 𝑒  ++  〈“ 𝑘 ”〉 ) ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ) ) | 
						
							| 66 | 9 14 19 24 28 65 | wrdind | ⊢ ( 𝐺  ∈  Word  ℝ  →  ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ ( 𝐹  ++  𝐺 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ) | 
						
							| 67 | 66 | 3impib | ⊢ ( ( 𝐺  ∈  Word  ℝ  ∧  𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ ( 𝐹  ++  𝐺 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) | 
						
							| 68 | 67 | 3com12 | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐺  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ ( 𝐹  ++  𝐺 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) |