| Step |
Hyp |
Ref |
Expression |
| 1 |
|
signsv.p |
⊢ ⨣ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) ) |
| 2 |
|
signsv.w |
⊢ 𝑊 = { 〈 ( Base ‘ ndx ) , { - 1 , 0 , 1 } 〉 , 〈 ( +g ‘ ndx ) , ⨣ 〉 } |
| 3 |
|
signsv.t |
⊢ 𝑇 = ( 𝑓 ∈ Word ℝ ↦ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ↦ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) |
| 4 |
|
signsv.v |
⊢ 𝑉 = ( 𝑓 ∈ Word ℝ ↦ Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) ) |
| 5 |
|
oveq2 |
⊢ ( 𝑔 = ∅ → ( 𝐹 ++ 𝑔 ) = ( 𝐹 ++ ∅ ) ) |
| 6 |
5
|
fveq2d |
⊢ ( 𝑔 = ∅ → ( 𝑇 ‘ ( 𝐹 ++ 𝑔 ) ) = ( 𝑇 ‘ ( 𝐹 ++ ∅ ) ) ) |
| 7 |
6
|
fveq1d |
⊢ ( 𝑔 = ∅ → ( ( 𝑇 ‘ ( 𝐹 ++ 𝑔 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ ( 𝐹 ++ ∅ ) ) ‘ 𝑁 ) ) |
| 8 |
7
|
eqeq1d |
⊢ ( 𝑔 = ∅ → ( ( ( 𝑇 ‘ ( 𝐹 ++ 𝑔 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ↔ ( ( 𝑇 ‘ ( 𝐹 ++ ∅ ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ) |
| 9 |
8
|
imbi2d |
⊢ ( 𝑔 = ∅ → ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑇 ‘ ( 𝐹 ++ 𝑔 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ↔ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑇 ‘ ( 𝐹 ++ ∅ ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ) ) |
| 10 |
|
oveq2 |
⊢ ( 𝑔 = 𝑒 → ( 𝐹 ++ 𝑔 ) = ( 𝐹 ++ 𝑒 ) ) |
| 11 |
10
|
fveq2d |
⊢ ( 𝑔 = 𝑒 → ( 𝑇 ‘ ( 𝐹 ++ 𝑔 ) ) = ( 𝑇 ‘ ( 𝐹 ++ 𝑒 ) ) ) |
| 12 |
11
|
fveq1d |
⊢ ( 𝑔 = 𝑒 → ( ( 𝑇 ‘ ( 𝐹 ++ 𝑔 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ ( 𝐹 ++ 𝑒 ) ) ‘ 𝑁 ) ) |
| 13 |
12
|
eqeq1d |
⊢ ( 𝑔 = 𝑒 → ( ( ( 𝑇 ‘ ( 𝐹 ++ 𝑔 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ↔ ( ( 𝑇 ‘ ( 𝐹 ++ 𝑒 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ) |
| 14 |
13
|
imbi2d |
⊢ ( 𝑔 = 𝑒 → ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑇 ‘ ( 𝐹 ++ 𝑔 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ↔ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑇 ‘ ( 𝐹 ++ 𝑒 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ) ) |
| 15 |
|
oveq2 |
⊢ ( 𝑔 = ( 𝑒 ++ 〈“ 𝑘 ”〉 ) → ( 𝐹 ++ 𝑔 ) = ( 𝐹 ++ ( 𝑒 ++ 〈“ 𝑘 ”〉 ) ) ) |
| 16 |
15
|
fveq2d |
⊢ ( 𝑔 = ( 𝑒 ++ 〈“ 𝑘 ”〉 ) → ( 𝑇 ‘ ( 𝐹 ++ 𝑔 ) ) = ( 𝑇 ‘ ( 𝐹 ++ ( 𝑒 ++ 〈“ 𝑘 ”〉 ) ) ) ) |
| 17 |
16
|
fveq1d |
⊢ ( 𝑔 = ( 𝑒 ++ 〈“ 𝑘 ”〉 ) → ( ( 𝑇 ‘ ( 𝐹 ++ 𝑔 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ ( 𝐹 ++ ( 𝑒 ++ 〈“ 𝑘 ”〉 ) ) ) ‘ 𝑁 ) ) |
| 18 |
17
|
eqeq1d |
⊢ ( 𝑔 = ( 𝑒 ++ 〈“ 𝑘 ”〉 ) → ( ( ( 𝑇 ‘ ( 𝐹 ++ 𝑔 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ↔ ( ( 𝑇 ‘ ( 𝐹 ++ ( 𝑒 ++ 〈“ 𝑘 ”〉 ) ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ) |
| 19 |
18
|
imbi2d |
⊢ ( 𝑔 = ( 𝑒 ++ 〈“ 𝑘 ”〉 ) → ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑇 ‘ ( 𝐹 ++ 𝑔 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ↔ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑇 ‘ ( 𝐹 ++ ( 𝑒 ++ 〈“ 𝑘 ”〉 ) ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ) ) |
| 20 |
|
oveq2 |
⊢ ( 𝑔 = 𝐺 → ( 𝐹 ++ 𝑔 ) = ( 𝐹 ++ 𝐺 ) ) |
| 21 |
20
|
fveq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑇 ‘ ( 𝐹 ++ 𝑔 ) ) = ( 𝑇 ‘ ( 𝐹 ++ 𝐺 ) ) ) |
| 22 |
21
|
fveq1d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑇 ‘ ( 𝐹 ++ 𝑔 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ ( 𝐹 ++ 𝐺 ) ) ‘ 𝑁 ) ) |
| 23 |
22
|
eqeq1d |
⊢ ( 𝑔 = 𝐺 → ( ( ( 𝑇 ‘ ( 𝐹 ++ 𝑔 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ↔ ( ( 𝑇 ‘ ( 𝐹 ++ 𝐺 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ) |
| 24 |
23
|
imbi2d |
⊢ ( 𝑔 = 𝐺 → ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑇 ‘ ( 𝐹 ++ 𝑔 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ↔ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑇 ‘ ( 𝐹 ++ 𝐺 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ) ) |
| 25 |
|
ccatrid |
⊢ ( 𝐹 ∈ Word ℝ → ( 𝐹 ++ ∅ ) = 𝐹 ) |
| 26 |
25
|
fveq2d |
⊢ ( 𝐹 ∈ Word ℝ → ( 𝑇 ‘ ( 𝐹 ++ ∅ ) ) = ( 𝑇 ‘ 𝐹 ) ) |
| 27 |
26
|
fveq1d |
⊢ ( 𝐹 ∈ Word ℝ → ( ( 𝑇 ‘ ( 𝐹 ++ ∅ ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑇 ‘ ( 𝐹 ++ ∅ ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) |
| 29 |
|
s1cl |
⊢ ( 𝑘 ∈ ℝ → 〈“ 𝑘 ”〉 ∈ Word ℝ ) |
| 30 |
|
ccatass |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ ∧ 〈“ 𝑘 ”〉 ∈ Word ℝ ) → ( ( 𝐹 ++ 𝑒 ) ++ 〈“ 𝑘 ”〉 ) = ( 𝐹 ++ ( 𝑒 ++ 〈“ 𝑘 ”〉 ) ) ) |
| 31 |
29 30
|
syl3an3 |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ ) → ( ( 𝐹 ++ 𝑒 ) ++ 〈“ 𝑘 ”〉 ) = ( 𝐹 ++ ( 𝑒 ++ 〈“ 𝑘 ”〉 ) ) ) |
| 32 |
31
|
3expb |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ ( 𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ ) ) → ( ( 𝐹 ++ 𝑒 ) ++ 〈“ 𝑘 ”〉 ) = ( 𝐹 ++ ( 𝑒 ++ 〈“ 𝑘 ”〉 ) ) ) |
| 33 |
32
|
adantlr |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ ) ) → ( ( 𝐹 ++ 𝑒 ) ++ 〈“ 𝑘 ”〉 ) = ( 𝐹 ++ ( 𝑒 ++ 〈“ 𝑘 ”〉 ) ) ) |
| 34 |
33
|
fveq2d |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ ) ) → ( 𝑇 ‘ ( ( 𝐹 ++ 𝑒 ) ++ 〈“ 𝑘 ”〉 ) ) = ( 𝑇 ‘ ( 𝐹 ++ ( 𝑒 ++ 〈“ 𝑘 ”〉 ) ) ) ) |
| 35 |
34
|
fveq1d |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ ) ) → ( ( 𝑇 ‘ ( ( 𝐹 ++ 𝑒 ) ++ 〈“ 𝑘 ”〉 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ ( 𝐹 ++ ( 𝑒 ++ 〈“ 𝑘 ”〉 ) ) ) ‘ 𝑁 ) ) |
| 36 |
|
ccatcl |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ ) → ( 𝐹 ++ 𝑒 ) ∈ Word ℝ ) |
| 37 |
36
|
ad2ant2r |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ ) ) → ( 𝐹 ++ 𝑒 ) ∈ Word ℝ ) |
| 38 |
|
simprr |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ ) ) → 𝑘 ∈ ℝ ) |
| 39 |
|
lencl |
⊢ ( 𝐹 ∈ Word ℝ → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 40 |
39
|
nn0zd |
⊢ ( 𝐹 ∈ Word ℝ → ( ♯ ‘ 𝐹 ) ∈ ℤ ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ ) → ( ♯ ‘ 𝐹 ) ∈ ℤ ) |
| 42 |
|
lencl |
⊢ ( ( 𝐹 ++ 𝑒 ) ∈ Word ℝ → ( ♯ ‘ ( 𝐹 ++ 𝑒 ) ) ∈ ℕ0 ) |
| 43 |
36 42
|
syl |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ ) → ( ♯ ‘ ( 𝐹 ++ 𝑒 ) ) ∈ ℕ0 ) |
| 44 |
43
|
nn0zd |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ ) → ( ♯ ‘ ( 𝐹 ++ 𝑒 ) ) ∈ ℤ ) |
| 45 |
39
|
nn0red |
⊢ ( 𝐹 ∈ Word ℝ → ( ♯ ‘ 𝐹 ) ∈ ℝ ) |
| 46 |
|
lencl |
⊢ ( 𝑒 ∈ Word ℝ → ( ♯ ‘ 𝑒 ) ∈ ℕ0 ) |
| 47 |
|
nn0addge1 |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℝ ∧ ( ♯ ‘ 𝑒 ) ∈ ℕ0 ) → ( ♯ ‘ 𝐹 ) ≤ ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ 𝑒 ) ) ) |
| 48 |
45 46 47
|
syl2an |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ ) → ( ♯ ‘ 𝐹 ) ≤ ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ 𝑒 ) ) ) |
| 49 |
|
ccatlen |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ ) → ( ♯ ‘ ( 𝐹 ++ 𝑒 ) ) = ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ 𝑒 ) ) ) |
| 50 |
48 49
|
breqtrrd |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ ) → ( ♯ ‘ 𝐹 ) ≤ ( ♯ ‘ ( 𝐹 ++ 𝑒 ) ) ) |
| 51 |
|
eluz2 |
⊢ ( ( ♯ ‘ ( 𝐹 ++ 𝑒 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝐹 ) ) ↔ ( ( ♯ ‘ 𝐹 ) ∈ ℤ ∧ ( ♯ ‘ ( 𝐹 ++ 𝑒 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ≤ ( ♯ ‘ ( 𝐹 ++ 𝑒 ) ) ) ) |
| 52 |
41 44 50 51
|
syl3anbrc |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ ) → ( ♯ ‘ ( 𝐹 ++ 𝑒 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝐹 ) ) ) |
| 53 |
|
fzoss2 |
⊢ ( ( ♯ ‘ ( 𝐹 ++ 𝑒 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝐹 ) ) → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 𝑒 ) ) ) ) |
| 54 |
52 53
|
syl |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑒 ∈ Word ℝ ) → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 𝑒 ) ) ) ) |
| 55 |
54
|
ad2ant2r |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ ) ) → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 𝑒 ) ) ) ) |
| 56 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ ) ) → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 57 |
55 56
|
sseldd |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ ) ) → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 𝑒 ) ) ) ) |
| 58 |
1 2 3 4
|
signstfvp |
⊢ ( ( ( 𝐹 ++ 𝑒 ) ∈ Word ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 𝑒 ) ) ) ) → ( ( 𝑇 ‘ ( ( 𝐹 ++ 𝑒 ) ++ 〈“ 𝑘 ”〉 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ ( 𝐹 ++ 𝑒 ) ) ‘ 𝑁 ) ) |
| 59 |
37 38 57 58
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ ) ) → ( ( 𝑇 ‘ ( ( 𝐹 ++ 𝑒 ) ++ 〈“ 𝑘 ”〉 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ ( 𝐹 ++ 𝑒 ) ) ‘ 𝑁 ) ) |
| 60 |
35 59
|
eqtr3d |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ ) ) → ( ( 𝑇 ‘ ( 𝐹 ++ ( 𝑒 ++ 〈“ 𝑘 ”〉 ) ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ ( 𝐹 ++ 𝑒 ) ) ‘ 𝑁 ) ) |
| 61 |
|
id |
⊢ ( ( ( 𝑇 ‘ ( 𝐹 ++ 𝑒 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) → ( ( 𝑇 ‘ ( 𝐹 ++ 𝑒 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) |
| 62 |
60 61
|
sylan9eq |
⊢ ( ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ ( ( 𝑇 ‘ ( 𝐹 ++ 𝑒 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) → ( ( 𝑇 ‘ ( 𝐹 ++ ( 𝑒 ++ 〈“ 𝑘 ”〉 ) ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) |
| 63 |
62
|
ex |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ ) ) → ( ( ( 𝑇 ‘ ( 𝐹 ++ 𝑒 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) → ( ( 𝑇 ‘ ( 𝐹 ++ ( 𝑒 ++ 〈“ 𝑘 ”〉 ) ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ) |
| 64 |
63
|
expcom |
⊢ ( ( 𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ ) → ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑇 ‘ ( 𝐹 ++ 𝑒 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) → ( ( 𝑇 ‘ ( 𝐹 ++ ( 𝑒 ++ 〈“ 𝑘 ”〉 ) ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ) ) |
| 65 |
64
|
a2d |
⊢ ( ( 𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ ) → ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑇 ‘ ( 𝐹 ++ 𝑒 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) → ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑇 ‘ ( 𝐹 ++ ( 𝑒 ++ 〈“ 𝑘 ”〉 ) ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ) ) |
| 66 |
9 14 19 24 28 65
|
wrdind |
⊢ ( 𝐺 ∈ Word ℝ → ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑇 ‘ ( 𝐹 ++ 𝐺 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) ) |
| 67 |
66
|
3impib |
⊢ ( ( 𝐺 ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑇 ‘ ( 𝐹 ++ 𝐺 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) |
| 68 |
67
|
3com12 |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐺 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑇 ‘ ( 𝐹 ++ 𝐺 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) |