Step |
Hyp |
Ref |
Expression |
1 |
|
signsv.p |
⊢ ⨣ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) ) |
2 |
|
signsv.w |
⊢ 𝑊 = { 〈 ( Base ‘ ndx ) , { - 1 , 0 , 1 } 〉 , 〈 ( +g ‘ ndx ) , ⨣ 〉 } |
3 |
|
signsv.t |
⊢ 𝑇 = ( 𝑓 ∈ Word ℝ ↦ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ↦ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) |
4 |
|
signsv.v |
⊢ 𝑉 = ( 𝑓 ∈ Word ℝ ↦ Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) ) |
5 |
1 2 3 4
|
signstf |
⊢ ( 𝐹 ∈ Word ℝ → ( 𝑇 ‘ 𝐹 ) ∈ Word ℝ ) |
6 |
|
wrdf |
⊢ ( ( 𝑇 ‘ 𝐹 ) ∈ Word ℝ → ( 𝑇 ‘ 𝐹 ) : ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ 𝐹 ) ) ) ⟶ ℝ ) |
7 |
|
ffn |
⊢ ( ( 𝑇 ‘ 𝐹 ) : ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ 𝐹 ) ) ) ⟶ ℝ → ( 𝑇 ‘ 𝐹 ) Fn ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ 𝐹 ) ) ) ) |
8 |
5 6 7
|
3syl |
⊢ ( 𝐹 ∈ Word ℝ → ( 𝑇 ‘ 𝐹 ) Fn ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ 𝐹 ) ) ) ) |
9 |
1 2 3 4
|
signstlen |
⊢ ( 𝐹 ∈ Word ℝ → ( ♯ ‘ ( 𝑇 ‘ 𝐹 ) ) = ( ♯ ‘ 𝐹 ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝐹 ∈ Word ℝ → ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ 𝐹 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
11 |
10
|
fneq2d |
⊢ ( 𝐹 ∈ Word ℝ → ( ( 𝑇 ‘ 𝐹 ) Fn ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ 𝐹 ) ) ) ↔ ( 𝑇 ‘ 𝐹 ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
12 |
8 11
|
mpbid |
⊢ ( 𝐹 ∈ Word ℝ → ( 𝑇 ‘ 𝐹 ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
13 |
|
fnresin |
⊢ ( ( 𝑇 ‘ 𝐹 ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 𝑇 ‘ 𝐹 ) ↾ ( 0 ..^ 𝑁 ) ) Fn ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∩ ( 0 ..^ 𝑁 ) ) ) |
14 |
12 13
|
syl |
⊢ ( 𝐹 ∈ Word ℝ → ( ( 𝑇 ‘ 𝐹 ) ↾ ( 0 ..^ 𝑁 ) ) Fn ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∩ ( 0 ..^ 𝑁 ) ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑇 ‘ 𝐹 ) ↾ ( 0 ..^ 𝑁 ) ) Fn ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∩ ( 0 ..^ 𝑁 ) ) ) |
16 |
|
elfzuz3 |
⊢ ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
17 |
|
fzoss2 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) → ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
18 |
16 17
|
syl |
⊢ ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
20 |
|
incom |
⊢ ( ( 0 ..^ 𝑁 ) ∩ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∩ ( 0 ..^ 𝑁 ) ) |
21 |
|
df-ss |
⊢ ( ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↔ ( ( 0 ..^ 𝑁 ) ∩ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( 0 ..^ 𝑁 ) ) |
22 |
21
|
biimpi |
⊢ ( ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 0 ..^ 𝑁 ) ∩ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( 0 ..^ 𝑁 ) ) |
23 |
20 22
|
eqtr3id |
⊢ ( ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∩ ( 0 ..^ 𝑁 ) ) = ( 0 ..^ 𝑁 ) ) |
24 |
23
|
fneq2d |
⊢ ( ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( ( 𝑇 ‘ 𝐹 ) ↾ ( 0 ..^ 𝑁 ) ) Fn ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∩ ( 0 ..^ 𝑁 ) ) ↔ ( ( 𝑇 ‘ 𝐹 ) ↾ ( 0 ..^ 𝑁 ) ) Fn ( 0 ..^ 𝑁 ) ) ) |
25 |
19 24
|
syl |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑇 ‘ 𝐹 ) ↾ ( 0 ..^ 𝑁 ) ) Fn ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∩ ( 0 ..^ 𝑁 ) ) ↔ ( ( 𝑇 ‘ 𝐹 ) ↾ ( 0 ..^ 𝑁 ) ) Fn ( 0 ..^ 𝑁 ) ) ) |
26 |
15 25
|
mpbid |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑇 ‘ 𝐹 ) ↾ ( 0 ..^ 𝑁 ) ) Fn ( 0 ..^ 𝑁 ) ) |
27 |
|
wrdres |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ∈ Word ℝ ) |
28 |
1 2 3 4
|
signstf |
⊢ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ∈ Word ℝ → ( 𝑇 ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ∈ Word ℝ ) |
29 |
|
wrdf |
⊢ ( ( 𝑇 ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ∈ Word ℝ → ( 𝑇 ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) : ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) ) ⟶ ℝ ) |
30 |
|
ffn |
⊢ ( ( 𝑇 ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) : ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) ) ⟶ ℝ → ( 𝑇 ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) Fn ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) ) ) |
31 |
27 28 29 30
|
4syl |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑇 ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) Fn ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) ) ) |
32 |
1 2 3 4
|
signstlen |
⊢ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ∈ Word ℝ → ( ♯ ‘ ( 𝑇 ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) = ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) |
33 |
27 32
|
syl |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝑇 ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) = ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) |
34 |
|
wrdfn |
⊢ ( 𝐹 ∈ Word ℝ → 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
35 |
|
fnssres |
⊢ ( ( 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) Fn ( 0 ..^ 𝑁 ) ) |
36 |
34 18 35
|
syl2an |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) Fn ( 0 ..^ 𝑁 ) ) |
37 |
|
hashfn |
⊢ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) Fn ( 0 ..^ 𝑁 ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) = ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) |
38 |
36 37
|
syl |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) = ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) |
39 |
|
elfznn0 |
⊢ ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) → 𝑁 ∈ ℕ0 ) |
40 |
|
hashfzo0 |
⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) |
41 |
39 40
|
syl |
⊢ ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) |
42 |
41
|
adantl |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) |
43 |
33 38 42
|
3eqtrd |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝑇 ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) = 𝑁 ) |
44 |
43
|
oveq2d |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) ) = ( 0 ..^ 𝑁 ) ) |
45 |
44
|
fneq2d |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑇 ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) Fn ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) ) ↔ ( 𝑇 ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) Fn ( 0 ..^ 𝑁 ) ) ) |
46 |
31 45
|
mpbid |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑇 ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) Fn ( 0 ..^ 𝑁 ) ) |
47 |
|
fvres |
⊢ ( 𝑚 ∈ ( 0 ..^ 𝑁 ) → ( ( ( 𝑇 ‘ 𝐹 ) ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑚 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑚 ) ) |
48 |
47
|
ad3antlr |
⊢ ( ( ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑚 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑔 ∈ Word ℝ ) ∧ 𝐹 = ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ++ 𝑔 ) ) → ( ( ( 𝑇 ‘ 𝐹 ) ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑚 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑚 ) ) |
49 |
|
simpr |
⊢ ( ( ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑚 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑔 ∈ Word ℝ ) ∧ 𝐹 = ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ++ 𝑔 ) ) → 𝐹 = ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ++ 𝑔 ) ) |
50 |
49
|
fveq2d |
⊢ ( ( ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑚 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑔 ∈ Word ℝ ) ∧ 𝐹 = ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ++ 𝑔 ) ) → ( 𝑇 ‘ 𝐹 ) = ( 𝑇 ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ++ 𝑔 ) ) ) |
51 |
50
|
fveq1d |
⊢ ( ( ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑚 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑔 ∈ Word ℝ ) ∧ 𝐹 = ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ++ 𝑔 ) ) → ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑚 ) = ( ( 𝑇 ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ++ 𝑔 ) ) ‘ 𝑚 ) ) |
52 |
27
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑚 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑔 ∈ Word ℝ ) ∧ 𝐹 = ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ++ 𝑔 ) ) → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ∈ Word ℝ ) |
53 |
|
simplr |
⊢ ( ( ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑚 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑔 ∈ Word ℝ ) ∧ 𝐹 = ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ++ 𝑔 ) ) → 𝑔 ∈ Word ℝ ) |
54 |
38 42
|
eqtrd |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) = 𝑁 ) |
55 |
54
|
oveq2d |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) = ( 0 ..^ 𝑁 ) ) |
56 |
55
|
eleq2d |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑚 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) ↔ 𝑚 ∈ ( 0 ..^ 𝑁 ) ) ) |
57 |
56
|
biimpar |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑚 ∈ ( 0 ..^ 𝑁 ) ) → 𝑚 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) ) |
58 |
57
|
ad2antrr |
⊢ ( ( ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑚 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑔 ∈ Word ℝ ) ∧ 𝐹 = ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ++ 𝑔 ) ) → 𝑚 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) ) |
59 |
1 2 3 4
|
signstfvc |
⊢ ( ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ∈ Word ℝ ∧ 𝑔 ∈ Word ℝ ∧ 𝑚 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) ) → ( ( 𝑇 ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ++ 𝑔 ) ) ‘ 𝑚 ) = ( ( 𝑇 ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ‘ 𝑚 ) ) |
60 |
52 53 58 59
|
syl3anc |
⊢ ( ( ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑚 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑔 ∈ Word ℝ ) ∧ 𝐹 = ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ++ 𝑔 ) ) → ( ( 𝑇 ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ++ 𝑔 ) ) ‘ 𝑚 ) = ( ( 𝑇 ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ‘ 𝑚 ) ) |
61 |
48 51 60
|
3eqtrd |
⊢ ( ( ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑚 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑔 ∈ Word ℝ ) ∧ 𝐹 = ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ++ 𝑔 ) ) → ( ( ( 𝑇 ‘ 𝐹 ) ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑚 ) = ( ( 𝑇 ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ‘ 𝑚 ) ) |
62 |
|
wrdsplex |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ∃ 𝑔 ∈ Word ℝ 𝐹 = ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ++ 𝑔 ) ) |
63 |
62
|
adantr |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑚 ∈ ( 0 ..^ 𝑁 ) ) → ∃ 𝑔 ∈ Word ℝ 𝐹 = ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ++ 𝑔 ) ) |
64 |
61 63
|
r19.29a |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑚 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑇 ‘ 𝐹 ) ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑚 ) = ( ( 𝑇 ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ‘ 𝑚 ) ) |
65 |
26 46 64
|
eqfnfvd |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑇 ‘ 𝐹 ) ↾ ( 0 ..^ 𝑁 ) ) = ( 𝑇 ‘ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) ) |