| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p | ⊢  ⨣   =  ( 𝑎  ∈  { - 1 ,  0 ,  1 } ,  𝑏  ∈  { - 1 ,  0 ,  1 }  ↦  if ( 𝑏  =  0 ,  𝑎 ,  𝑏 ) ) | 
						
							| 2 |  | signsv.w | ⊢ 𝑊  =  { 〈 ( Base ‘ ndx ) ,  { - 1 ,  0 ,  1 } 〉 ,  〈 ( +g ‘ ndx ) ,   ⨣  〉 } | 
						
							| 3 |  | signsv.t | ⊢ 𝑇  =  ( 𝑓  ∈  Word  ℝ  ↦  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) )  ↦  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑛 )  ↦  ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v | ⊢ 𝑉  =  ( 𝑓  ∈  Word  ℝ  ↦  Σ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 ) ) | 
						
							| 5 | 1 2 3 4 | signstf | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( 𝑇 ‘ 𝐹 )  ∈  Word  ℝ ) | 
						
							| 6 |  | wrdf | ⊢ ( ( 𝑇 ‘ 𝐹 )  ∈  Word  ℝ  →  ( 𝑇 ‘ 𝐹 ) : ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ 𝐹 ) ) ) ⟶ ℝ ) | 
						
							| 7 |  | ffn | ⊢ ( ( 𝑇 ‘ 𝐹 ) : ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ 𝐹 ) ) ) ⟶ ℝ  →  ( 𝑇 ‘ 𝐹 )  Fn  ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ 𝐹 ) ) ) ) | 
						
							| 8 | 5 6 7 | 3syl | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( 𝑇 ‘ 𝐹 )  Fn  ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ 𝐹 ) ) ) ) | 
						
							| 9 | 1 2 3 4 | signstlen | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( ♯ ‘ ( 𝑇 ‘ 𝐹 ) )  =  ( ♯ ‘ 𝐹 ) ) | 
						
							| 10 | 9 | oveq2d | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ 𝐹 ) ) )  =  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 11 | 10 | fneq2d | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( ( 𝑇 ‘ 𝐹 )  Fn  ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ 𝐹 ) ) )  ↔  ( 𝑇 ‘ 𝐹 )  Fn  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 12 | 8 11 | mpbid | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( 𝑇 ‘ 𝐹 )  Fn  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 13 |  | fnresin | ⊢ ( ( 𝑇 ‘ 𝐹 )  Fn  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ( 𝑇 ‘ 𝐹 )  ↾  ( 0 ..^ 𝑁 ) )  Fn  ( ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∩  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( ( 𝑇 ‘ 𝐹 )  ↾  ( 0 ..^ 𝑁 ) )  Fn  ( ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∩  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ 𝐹 )  ↾  ( 0 ..^ 𝑁 ) )  Fn  ( ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∩  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 16 |  | elfzuz3 | ⊢ ( 𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) )  →  ( ♯ ‘ 𝐹 )  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 17 |  | fzoss2 | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ( ℤ≥ ‘ 𝑁 )  →  ( 0 ..^ 𝑁 )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) )  →  ( 0 ..^ 𝑁 )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  →  ( 0 ..^ 𝑁 )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 20 |  | incom | ⊢ ( ( 0 ..^ 𝑁 )  ∩  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  =  ( ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∩  ( 0 ..^ 𝑁 ) ) | 
						
							| 21 |  | dfss2 | ⊢ ( ( 0 ..^ 𝑁 )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ↔  ( ( 0 ..^ 𝑁 )  ∩  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  =  ( 0 ..^ 𝑁 ) ) | 
						
							| 22 | 21 | biimpi | ⊢ ( ( 0 ..^ 𝑁 )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ( 0 ..^ 𝑁 )  ∩  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  =  ( 0 ..^ 𝑁 ) ) | 
						
							| 23 | 20 22 | eqtr3id | ⊢ ( ( 0 ..^ 𝑁 )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∩  ( 0 ..^ 𝑁 ) )  =  ( 0 ..^ 𝑁 ) ) | 
						
							| 24 | 23 | fneq2d | ⊢ ( ( 0 ..^ 𝑁 )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ( ( 𝑇 ‘ 𝐹 )  ↾  ( 0 ..^ 𝑁 ) )  Fn  ( ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∩  ( 0 ..^ 𝑁 ) )  ↔  ( ( 𝑇 ‘ 𝐹 )  ↾  ( 0 ..^ 𝑁 ) )  Fn  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 25 | 19 24 | syl | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  →  ( ( ( 𝑇 ‘ 𝐹 )  ↾  ( 0 ..^ 𝑁 ) )  Fn  ( ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∩  ( 0 ..^ 𝑁 ) )  ↔  ( ( 𝑇 ‘ 𝐹 )  ↾  ( 0 ..^ 𝑁 ) )  Fn  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 26 | 15 25 | mpbid | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ 𝐹 )  ↾  ( 0 ..^ 𝑁 ) )  Fn  ( 0 ..^ 𝑁 ) ) | 
						
							| 27 |  | wrdres | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ∈  Word  ℝ ) | 
						
							| 28 | 1 2 3 4 | signstf | ⊢ ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ∈  Word  ℝ  →  ( 𝑇 ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) )  ∈  Word  ℝ ) | 
						
							| 29 |  | wrdf | ⊢ ( ( 𝑇 ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) )  ∈  Word  ℝ  →  ( 𝑇 ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) : ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) ) ) ⟶ ℝ ) | 
						
							| 30 |  | ffn | ⊢ ( ( 𝑇 ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) : ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) ) ) ⟶ ℝ  →  ( 𝑇 ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) )  Fn  ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) ) ) ) | 
						
							| 31 | 27 28 29 30 | 4syl | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑇 ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) )  Fn  ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) ) ) ) | 
						
							| 32 | 1 2 3 4 | signstlen | ⊢ ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ∈  Word  ℝ  →  ( ♯ ‘ ( 𝑇 ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) )  =  ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) ) | 
						
							| 33 | 27 32 | syl | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  →  ( ♯ ‘ ( 𝑇 ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) )  =  ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) ) | 
						
							| 34 |  | wrdfn | ⊢ ( 𝐹  ∈  Word  ℝ  →  𝐹  Fn  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 35 |  | fnssres | ⊢ ( ( 𝐹  Fn  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  ( 0 ..^ 𝑁 )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  Fn  ( 0 ..^ 𝑁 ) ) | 
						
							| 36 | 34 18 35 | syl2an | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  Fn  ( 0 ..^ 𝑁 ) ) | 
						
							| 37 |  | hashfn | ⊢ ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  Fn  ( 0 ..^ 𝑁 )  →  ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) )  =  ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) | 
						
							| 38 | 36 37 | syl | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  →  ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) )  =  ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) | 
						
							| 39 |  | elfznn0 | ⊢ ( 𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 40 |  | hashfzo0 | ⊢ ( 𝑁  ∈  ℕ0  →  ( ♯ ‘ ( 0 ..^ 𝑁 ) )  =  𝑁 ) | 
						
							| 41 | 39 40 | syl | ⊢ ( 𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) )  →  ( ♯ ‘ ( 0 ..^ 𝑁 ) )  =  𝑁 ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  →  ( ♯ ‘ ( 0 ..^ 𝑁 ) )  =  𝑁 ) | 
						
							| 43 | 33 38 42 | 3eqtrd | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  →  ( ♯ ‘ ( 𝑇 ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) )  =  𝑁 ) | 
						
							| 44 | 43 | oveq2d | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  →  ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) ) )  =  ( 0 ..^ 𝑁 ) ) | 
						
							| 45 | 44 | fneq2d | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) )  Fn  ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) ) )  ↔  ( 𝑇 ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) )  Fn  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 46 | 31 45 | mpbid | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑇 ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) )  Fn  ( 0 ..^ 𝑁 ) ) | 
						
							| 47 |  | fvres | ⊢ ( 𝑚  ∈  ( 0 ..^ 𝑁 )  →  ( ( ( 𝑇 ‘ 𝐹 )  ↾  ( 0 ..^ 𝑁 ) ) ‘ 𝑚 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑚 ) ) | 
						
							| 48 | 47 | ad3antlr | ⊢ ( ( ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  ∧  𝑚  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑔  ∈  Word  ℝ )  ∧  𝐹  =  ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ++  𝑔 ) )  →  ( ( ( 𝑇 ‘ 𝐹 )  ↾  ( 0 ..^ 𝑁 ) ) ‘ 𝑚 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑚 ) ) | 
						
							| 49 |  | simpr | ⊢ ( ( ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  ∧  𝑚  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑔  ∈  Word  ℝ )  ∧  𝐹  =  ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ++  𝑔 ) )  →  𝐹  =  ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ++  𝑔 ) ) | 
						
							| 50 | 49 | fveq2d | ⊢ ( ( ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  ∧  𝑚  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑔  ∈  Word  ℝ )  ∧  𝐹  =  ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ++  𝑔 ) )  →  ( 𝑇 ‘ 𝐹 )  =  ( 𝑇 ‘ ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ++  𝑔 ) ) ) | 
						
							| 51 | 50 | fveq1d | ⊢ ( ( ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  ∧  𝑚  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑔  ∈  Word  ℝ )  ∧  𝐹  =  ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ++  𝑔 ) )  →  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑚 )  =  ( ( 𝑇 ‘ ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ++  𝑔 ) ) ‘ 𝑚 ) ) | 
						
							| 52 | 27 | ad3antrrr | ⊢ ( ( ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  ∧  𝑚  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑔  ∈  Word  ℝ )  ∧  𝐹  =  ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ++  𝑔 ) )  →  ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ∈  Word  ℝ ) | 
						
							| 53 |  | simplr | ⊢ ( ( ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  ∧  𝑚  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑔  ∈  Word  ℝ )  ∧  𝐹  =  ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ++  𝑔 ) )  →  𝑔  ∈  Word  ℝ ) | 
						
							| 54 | 38 42 | eqtrd | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  →  ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) )  =  𝑁 ) | 
						
							| 55 | 54 | oveq2d | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  →  ( 0 ..^ ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) )  =  ( 0 ..^ 𝑁 ) ) | 
						
							| 56 | 55 | eleq2d | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑚  ∈  ( 0 ..^ ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) )  ↔  𝑚  ∈  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 57 | 56 | biimpar | ⊢ ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  ∧  𝑚  ∈  ( 0 ..^ 𝑁 ) )  →  𝑚  ∈  ( 0 ..^ ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) ) ) | 
						
							| 58 | 57 | ad2antrr | ⊢ ( ( ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  ∧  𝑚  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑔  ∈  Word  ℝ )  ∧  𝐹  =  ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ++  𝑔 ) )  →  𝑚  ∈  ( 0 ..^ ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) ) ) | 
						
							| 59 | 1 2 3 4 | signstfvc | ⊢ ( ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ∈  Word  ℝ  ∧  𝑔  ∈  Word  ℝ  ∧  𝑚  ∈  ( 0 ..^ ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) ) )  →  ( ( 𝑇 ‘ ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ++  𝑔 ) ) ‘ 𝑚 )  =  ( ( 𝑇 ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) ‘ 𝑚 ) ) | 
						
							| 60 | 52 53 58 59 | syl3anc | ⊢ ( ( ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  ∧  𝑚  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑔  ∈  Word  ℝ )  ∧  𝐹  =  ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ++  𝑔 ) )  →  ( ( 𝑇 ‘ ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ++  𝑔 ) ) ‘ 𝑚 )  =  ( ( 𝑇 ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) ‘ 𝑚 ) ) | 
						
							| 61 | 48 51 60 | 3eqtrd | ⊢ ( ( ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  ∧  𝑚  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑔  ∈  Word  ℝ )  ∧  𝐹  =  ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ++  𝑔 ) )  →  ( ( ( 𝑇 ‘ 𝐹 )  ↾  ( 0 ..^ 𝑁 ) ) ‘ 𝑚 )  =  ( ( 𝑇 ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) ‘ 𝑚 ) ) | 
						
							| 62 |  | wrdsplex | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  →  ∃ 𝑔  ∈  Word  ℝ 𝐹  =  ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ++  𝑔 ) ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  ∧  𝑚  ∈  ( 0 ..^ 𝑁 ) )  →  ∃ 𝑔  ∈  Word  ℝ 𝐹  =  ( ( 𝐹  ↾  ( 0 ..^ 𝑁 ) )  ++  𝑔 ) ) | 
						
							| 64 | 61 63 | r19.29a | ⊢ ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  ∧  𝑚  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( ( 𝑇 ‘ 𝐹 )  ↾  ( 0 ..^ 𝑁 ) ) ‘ 𝑚 )  =  ( ( 𝑇 ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) ‘ 𝑚 ) ) | 
						
							| 65 | 26 46 64 | eqfnfvd | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ 𝐹 )  ↾  ( 0 ..^ 𝑁 ) )  =  ( 𝑇 ‘ ( 𝐹  ↾  ( 0 ..^ 𝑁 ) ) ) ) |