Metamath Proof Explorer


Theorem signstres

Description: Restriction of a zero skipping sign to a subword. (Contributed by Thierry Arnoux, 11-Oct-2018)

Ref Expression
Hypotheses signsv.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
signsv.w W = Base ndx 1 0 1 + ndx ˙
signsv.t T = f Word n 0 ..^ f W i = 0 n sgn f i
signsv.v V = f Word j 1 ..^ f if T f j T f j 1 1 0
Assertion signstres F Word N 0 F T F 0 ..^ N = T F 0 ..^ N

Proof

Step Hyp Ref Expression
1 signsv.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
2 signsv.w W = Base ndx 1 0 1 + ndx ˙
3 signsv.t T = f Word n 0 ..^ f W i = 0 n sgn f i
4 signsv.v V = f Word j 1 ..^ f if T f j T f j 1 1 0
5 1 2 3 4 signstf F Word T F Word
6 wrdf T F Word T F : 0 ..^ T F
7 ffn T F : 0 ..^ T F T F Fn 0 ..^ T F
8 5 6 7 3syl F Word T F Fn 0 ..^ T F
9 1 2 3 4 signstlen F Word T F = F
10 9 oveq2d F Word 0 ..^ T F = 0 ..^ F
11 10 fneq2d F Word T F Fn 0 ..^ T F T F Fn 0 ..^ F
12 8 11 mpbid F Word T F Fn 0 ..^ F
13 fnresin T F Fn 0 ..^ F T F 0 ..^ N Fn 0 ..^ F 0 ..^ N
14 12 13 syl F Word T F 0 ..^ N Fn 0 ..^ F 0 ..^ N
15 14 adantr F Word N 0 F T F 0 ..^ N Fn 0 ..^ F 0 ..^ N
16 elfzuz3 N 0 F F N
17 fzoss2 F N 0 ..^ N 0 ..^ F
18 16 17 syl N 0 F 0 ..^ N 0 ..^ F
19 18 adantl F Word N 0 F 0 ..^ N 0 ..^ F
20 incom 0 ..^ N 0 ..^ F = 0 ..^ F 0 ..^ N
21 df-ss 0 ..^ N 0 ..^ F 0 ..^ N 0 ..^ F = 0 ..^ N
22 21 biimpi 0 ..^ N 0 ..^ F 0 ..^ N 0 ..^ F = 0 ..^ N
23 20 22 syl5eqr 0 ..^ N 0 ..^ F 0 ..^ F 0 ..^ N = 0 ..^ N
24 23 fneq2d 0 ..^ N 0 ..^ F T F 0 ..^ N Fn 0 ..^ F 0 ..^ N T F 0 ..^ N Fn 0 ..^ N
25 19 24 syl F Word N 0 F T F 0 ..^ N Fn 0 ..^ F 0 ..^ N T F 0 ..^ N Fn 0 ..^ N
26 15 25 mpbid F Word N 0 F T F 0 ..^ N Fn 0 ..^ N
27 wrdres F Word N 0 F F 0 ..^ N Word
28 1 2 3 4 signstf F 0 ..^ N Word T F 0 ..^ N Word
29 wrdf T F 0 ..^ N Word T F 0 ..^ N : 0 ..^ T F 0 ..^ N
30 ffn T F 0 ..^ N : 0 ..^ T F 0 ..^ N T F 0 ..^ N Fn 0 ..^ T F 0 ..^ N
31 27 28 29 30 4syl F Word N 0 F T F 0 ..^ N Fn 0 ..^ T F 0 ..^ N
32 1 2 3 4 signstlen F 0 ..^ N Word T F 0 ..^ N = F 0 ..^ N
33 27 32 syl F Word N 0 F T F 0 ..^ N = F 0 ..^ N
34 wrdfn F Word F Fn 0 ..^ F
35 fnssres F Fn 0 ..^ F 0 ..^ N 0 ..^ F F 0 ..^ N Fn 0 ..^ N
36 34 18 35 syl2an F Word N 0 F F 0 ..^ N Fn 0 ..^ N
37 hashfn F 0 ..^ N Fn 0 ..^ N F 0 ..^ N = 0 ..^ N
38 36 37 syl F Word N 0 F F 0 ..^ N = 0 ..^ N
39 elfznn0 N 0 F N 0
40 hashfzo0 N 0 0 ..^ N = N
41 39 40 syl N 0 F 0 ..^ N = N
42 41 adantl F Word N 0 F 0 ..^ N = N
43 33 38 42 3eqtrd F Word N 0 F T F 0 ..^ N = N
44 43 oveq2d F Word N 0 F 0 ..^ T F 0 ..^ N = 0 ..^ N
45 44 fneq2d F Word N 0 F T F 0 ..^ N Fn 0 ..^ T F 0 ..^ N T F 0 ..^ N Fn 0 ..^ N
46 31 45 mpbid F Word N 0 F T F 0 ..^ N Fn 0 ..^ N
47 fvres m 0 ..^ N T F 0 ..^ N m = T F m
48 47 ad3antlr F Word N 0 F m 0 ..^ N g Word F = F 0 ..^ N ++ g T F 0 ..^ N m = T F m
49 simpr F Word N 0 F m 0 ..^ N g Word F = F 0 ..^ N ++ g F = F 0 ..^ N ++ g
50 49 fveq2d F Word N 0 F m 0 ..^ N g Word F = F 0 ..^ N ++ g T F = T F 0 ..^ N ++ g
51 50 fveq1d F Word N 0 F m 0 ..^ N g Word F = F 0 ..^ N ++ g T F m = T F 0 ..^ N ++ g m
52 27 ad3antrrr F Word N 0 F m 0 ..^ N g Word F = F 0 ..^ N ++ g F 0 ..^ N Word
53 simplr F Word N 0 F m 0 ..^ N g Word F = F 0 ..^ N ++ g g Word
54 38 42 eqtrd F Word N 0 F F 0 ..^ N = N
55 54 oveq2d F Word N 0 F 0 ..^ F 0 ..^ N = 0 ..^ N
56 55 eleq2d F Word N 0 F m 0 ..^ F 0 ..^ N m 0 ..^ N
57 56 biimpar F Word N 0 F m 0 ..^ N m 0 ..^ F 0 ..^ N
58 57 ad2antrr F Word N 0 F m 0 ..^ N g Word F = F 0 ..^ N ++ g m 0 ..^ F 0 ..^ N
59 1 2 3 4 signstfvc F 0 ..^ N Word g Word m 0 ..^ F 0 ..^ N T F 0 ..^ N ++ g m = T F 0 ..^ N m
60 52 53 58 59 syl3anc F Word N 0 F m 0 ..^ N g Word F = F 0 ..^ N ++ g T F 0 ..^ N ++ g m = T F 0 ..^ N m
61 48 51 60 3eqtrd F Word N 0 F m 0 ..^ N g Word F = F 0 ..^ N ++ g T F 0 ..^ N m = T F 0 ..^ N m
62 wrdsplex F Word N 0 F g Word F = F 0 ..^ N ++ g
63 62 adantr F Word N 0 F m 0 ..^ N g Word F = F 0 ..^ N ++ g
64 61 63 r19.29a F Word N 0 F m 0 ..^ N T F 0 ..^ N m = T F 0 ..^ N m
65 26 46 64 eqfnfvd F Word N 0 F T F 0 ..^ N = T F 0 ..^ N