Metamath Proof Explorer


Theorem signstfveq0a

Description: Lemma for signstfveq0 . (Contributed by Thierry Arnoux, 11-Oct-2018)

Ref Expression
Hypotheses signsv.p = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
signsv.w 𝑊 = { ⟨ ( Base ‘ ndx ) , { - 1 , 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ }
signsv.t 𝑇 = ( 𝑓 ∈ Word ℝ ↦ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ↦ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( sgn ‘ ( 𝑓𝑖 ) ) ) ) ) )
signsv.v 𝑉 = ( 𝑓 ∈ Word ℝ ↦ Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) )
signstfveq0.1 𝑁 = ( ♯ ‘ 𝐹 )
Assertion signstfveq0a ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 ) → 𝑁 ∈ ( ℤ ‘ 2 ) )

Proof

Step Hyp Ref Expression
1 signsv.p = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
2 signsv.w 𝑊 = { ⟨ ( Base ‘ ndx ) , { - 1 , 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ }
3 signsv.t 𝑇 = ( 𝑓 ∈ Word ℝ ↦ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ↦ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( sgn ‘ ( 𝑓𝑖 ) ) ) ) ) )
4 signsv.v 𝑉 = ( 𝑓 ∈ Word ℝ ↦ Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) )
5 signstfveq0.1 𝑁 = ( ♯ ‘ 𝐹 )
6 simpll ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 ) → 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) )
7 6 eldifad ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 ) → 𝐹 ∈ Word ℝ )
8 lencl ( 𝐹 ∈ Word ℝ → ( ♯ ‘ 𝐹 ) ∈ ℕ0 )
9 5 8 eqeltrid ( 𝐹 ∈ Word ℝ → 𝑁 ∈ ℕ0 )
10 7 9 syl ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 ) → 𝑁 ∈ ℕ0 )
11 eldifsn ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ↔ ( 𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅ ) )
12 6 11 sylib ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 ) → ( 𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅ ) )
13 hasheq0 ( 𝐹 ∈ Word ℝ → ( ( ♯ ‘ 𝐹 ) = 0 ↔ 𝐹 = ∅ ) )
14 13 necon3bid ( 𝐹 ∈ Word ℝ → ( ( ♯ ‘ 𝐹 ) ≠ 0 ↔ 𝐹 ≠ ∅ ) )
15 14 biimpar ( ( 𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅ ) → ( ♯ ‘ 𝐹 ) ≠ 0 )
16 5 neeq1i ( 𝑁 ≠ 0 ↔ ( ♯ ‘ 𝐹 ) ≠ 0 )
17 15 16 sylibr ( ( 𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅ ) → 𝑁 ≠ 0 )
18 12 17 syl ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 ) → 𝑁 ≠ 0 )
19 elnnne0 ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0𝑁 ≠ 0 ) )
20 10 18 19 sylanbrc ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 ) → 𝑁 ∈ ℕ )
21 simplr ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 ) → ( 𝐹 ‘ 0 ) ≠ 0 )
22 simpr ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 ) → ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 )
23 21 22 neeqtrrd ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 ) → ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ ( 𝑁 − 1 ) ) )
24 23 necomd ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 ) → ( 𝐹 ‘ ( 𝑁 − 1 ) ) ≠ ( 𝐹 ‘ 0 ) )
25 oveq1 ( 𝑁 = 1 → ( 𝑁 − 1 ) = ( 1 − 1 ) )
26 1m1e0 ( 1 − 1 ) = 0
27 25 26 eqtrdi ( 𝑁 = 1 → ( 𝑁 − 1 ) = 0 )
28 27 fveq2d ( 𝑁 = 1 → ( 𝐹 ‘ ( 𝑁 − 1 ) ) = ( 𝐹 ‘ 0 ) )
29 28 necon3i ( ( 𝐹 ‘ ( 𝑁 − 1 ) ) ≠ ( 𝐹 ‘ 0 ) → 𝑁 ≠ 1 )
30 24 29 syl ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 ) → 𝑁 ≠ 1 )
31 eluz2b3 ( 𝑁 ∈ ( ℤ ‘ 2 ) ↔ ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) )
32 20 30 31 sylanbrc ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 ) → 𝑁 ∈ ( ℤ ‘ 2 ) )