| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p | ⊢  ⨣   =  ( 𝑎  ∈  { - 1 ,  0 ,  1 } ,  𝑏  ∈  { - 1 ,  0 ,  1 }  ↦  if ( 𝑏  =  0 ,  𝑎 ,  𝑏 ) ) | 
						
							| 2 |  | signsv.w | ⊢ 𝑊  =  { 〈 ( Base ‘ ndx ) ,  { - 1 ,  0 ,  1 } 〉 ,  〈 ( +g ‘ ndx ) ,   ⨣  〉 } | 
						
							| 3 |  | signsv.t | ⊢ 𝑇  =  ( 𝑓  ∈  Word  ℝ  ↦  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) )  ↦  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑛 )  ↦  ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v | ⊢ 𝑉  =  ( 𝑓  ∈  Word  ℝ  ↦  Σ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 ) ) | 
						
							| 5 |  | signstfveq0.1 | ⊢ 𝑁  =  ( ♯ ‘ 𝐹 ) | 
						
							| 6 |  | simpll | ⊢ ( ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  ∧  ( 𝐹 ‘ ( 𝑁  −  1 ) )  =  0 )  →  𝐹  ∈  ( Word  ℝ  ∖  { ∅ } ) ) | 
						
							| 7 | 6 | eldifad | ⊢ ( ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  ∧  ( 𝐹 ‘ ( 𝑁  −  1 ) )  =  0 )  →  𝐹  ∈  Word  ℝ ) | 
						
							| 8 |  | lencl | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 9 | 5 8 | eqeltrid | ⊢ ( 𝐹  ∈  Word  ℝ  →  𝑁  ∈  ℕ0 ) | 
						
							| 10 | 7 9 | syl | ⊢ ( ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  ∧  ( 𝐹 ‘ ( 𝑁  −  1 ) )  =  0 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 11 |  | eldifsn | ⊢ ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ↔  ( 𝐹  ∈  Word  ℝ  ∧  𝐹  ≠  ∅ ) ) | 
						
							| 12 | 6 11 | sylib | ⊢ ( ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  ∧  ( 𝐹 ‘ ( 𝑁  −  1 ) )  =  0 )  →  ( 𝐹  ∈  Word  ℝ  ∧  𝐹  ≠  ∅ ) ) | 
						
							| 13 |  | hasheq0 | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( ( ♯ ‘ 𝐹 )  =  0  ↔  𝐹  =  ∅ ) ) | 
						
							| 14 | 13 | necon3bid | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( ( ♯ ‘ 𝐹 )  ≠  0  ↔  𝐹  ≠  ∅ ) ) | 
						
							| 15 | 14 | biimpar | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐹  ≠  ∅ )  →  ( ♯ ‘ 𝐹 )  ≠  0 ) | 
						
							| 16 | 5 | neeq1i | ⊢ ( 𝑁  ≠  0  ↔  ( ♯ ‘ 𝐹 )  ≠  0 ) | 
						
							| 17 | 15 16 | sylibr | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐹  ≠  ∅ )  →  𝑁  ≠  0 ) | 
						
							| 18 | 12 17 | syl | ⊢ ( ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  ∧  ( 𝐹 ‘ ( 𝑁  −  1 ) )  =  0 )  →  𝑁  ≠  0 ) | 
						
							| 19 |  | elnnne0 | ⊢ ( 𝑁  ∈  ℕ  ↔  ( 𝑁  ∈  ℕ0  ∧  𝑁  ≠  0 ) ) | 
						
							| 20 | 10 18 19 | sylanbrc | ⊢ ( ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  ∧  ( 𝐹 ‘ ( 𝑁  −  1 ) )  =  0 )  →  𝑁  ∈  ℕ ) | 
						
							| 21 |  | simplr | ⊢ ( ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  ∧  ( 𝐹 ‘ ( 𝑁  −  1 ) )  =  0 )  →  ( 𝐹 ‘ 0 )  ≠  0 ) | 
						
							| 22 |  | simpr | ⊢ ( ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  ∧  ( 𝐹 ‘ ( 𝑁  −  1 ) )  =  0 )  →  ( 𝐹 ‘ ( 𝑁  −  1 ) )  =  0 ) | 
						
							| 23 | 21 22 | neeqtrrd | ⊢ ( ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  ∧  ( 𝐹 ‘ ( 𝑁  −  1 ) )  =  0 )  →  ( 𝐹 ‘ 0 )  ≠  ( 𝐹 ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 24 | 23 | necomd | ⊢ ( ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  ∧  ( 𝐹 ‘ ( 𝑁  −  1 ) )  =  0 )  →  ( 𝐹 ‘ ( 𝑁  −  1 ) )  ≠  ( 𝐹 ‘ 0 ) ) | 
						
							| 25 |  | oveq1 | ⊢ ( 𝑁  =  1  →  ( 𝑁  −  1 )  =  ( 1  −  1 ) ) | 
						
							| 26 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 27 | 25 26 | eqtrdi | ⊢ ( 𝑁  =  1  →  ( 𝑁  −  1 )  =  0 ) | 
						
							| 28 | 27 | fveq2d | ⊢ ( 𝑁  =  1  →  ( 𝐹 ‘ ( 𝑁  −  1 ) )  =  ( 𝐹 ‘ 0 ) ) | 
						
							| 29 | 28 | necon3i | ⊢ ( ( 𝐹 ‘ ( 𝑁  −  1 ) )  ≠  ( 𝐹 ‘ 0 )  →  𝑁  ≠  1 ) | 
						
							| 30 | 24 29 | syl | ⊢ ( ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  ∧  ( 𝐹 ‘ ( 𝑁  −  1 ) )  =  0 )  →  𝑁  ≠  1 ) | 
						
							| 31 |  | eluz2b3 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑁  ∈  ℕ  ∧  𝑁  ≠  1 ) ) | 
						
							| 32 | 20 30 31 | sylanbrc | ⊢ ( ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  ∧  ( 𝐹 ‘ ( 𝑁  −  1 ) )  =  0 )  →  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) |