| Step |
Hyp |
Ref |
Expression |
| 1 |
|
signsv.p |
⊢ ⨣ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) ) |
| 2 |
|
signsv.w |
⊢ 𝑊 = { 〈 ( Base ‘ ndx ) , { - 1 , 0 , 1 } 〉 , 〈 ( +g ‘ ndx ) , ⨣ 〉 } |
| 3 |
|
signsv.t |
⊢ 𝑇 = ( 𝑓 ∈ Word ℝ ↦ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ↦ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) |
| 4 |
|
signsv.v |
⊢ 𝑉 = ( 𝑓 ∈ Word ℝ ↦ Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) ) |
| 5 |
|
signstfveq0.1 |
⊢ 𝑁 = ( ♯ ‘ 𝐹 ) |
| 6 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 ) → 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ) |
| 7 |
6
|
eldifad |
⊢ ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 ) → 𝐹 ∈ Word ℝ ) |
| 8 |
|
lencl |
⊢ ( 𝐹 ∈ Word ℝ → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 9 |
5 8
|
eqeltrid |
⊢ ( 𝐹 ∈ Word ℝ → 𝑁 ∈ ℕ0 ) |
| 10 |
7 9
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 ) → 𝑁 ∈ ℕ0 ) |
| 11 |
|
eldifsn |
⊢ ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ↔ ( 𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅ ) ) |
| 12 |
6 11
|
sylib |
⊢ ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 ) → ( 𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅ ) ) |
| 13 |
|
hasheq0 |
⊢ ( 𝐹 ∈ Word ℝ → ( ( ♯ ‘ 𝐹 ) = 0 ↔ 𝐹 = ∅ ) ) |
| 14 |
13
|
necon3bid |
⊢ ( 𝐹 ∈ Word ℝ → ( ( ♯ ‘ 𝐹 ) ≠ 0 ↔ 𝐹 ≠ ∅ ) ) |
| 15 |
14
|
biimpar |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅ ) → ( ♯ ‘ 𝐹 ) ≠ 0 ) |
| 16 |
5
|
neeq1i |
⊢ ( 𝑁 ≠ 0 ↔ ( ♯ ‘ 𝐹 ) ≠ 0 ) |
| 17 |
15 16
|
sylibr |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅ ) → 𝑁 ≠ 0 ) |
| 18 |
12 17
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 ) → 𝑁 ≠ 0 ) |
| 19 |
|
elnnne0 |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ) ) |
| 20 |
10 18 19
|
sylanbrc |
⊢ ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 ) → 𝑁 ∈ ℕ ) |
| 21 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 ) → ( 𝐹 ‘ 0 ) ≠ 0 ) |
| 22 |
|
simpr |
⊢ ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 ) → ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 ) |
| 23 |
21 22
|
neeqtrrd |
⊢ ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 ) → ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ ( 𝑁 − 1 ) ) ) |
| 24 |
23
|
necomd |
⊢ ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 ) → ( 𝐹 ‘ ( 𝑁 − 1 ) ) ≠ ( 𝐹 ‘ 0 ) ) |
| 25 |
|
oveq1 |
⊢ ( 𝑁 = 1 → ( 𝑁 − 1 ) = ( 1 − 1 ) ) |
| 26 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 27 |
25 26
|
eqtrdi |
⊢ ( 𝑁 = 1 → ( 𝑁 − 1 ) = 0 ) |
| 28 |
27
|
fveq2d |
⊢ ( 𝑁 = 1 → ( 𝐹 ‘ ( 𝑁 − 1 ) ) = ( 𝐹 ‘ 0 ) ) |
| 29 |
28
|
necon3i |
⊢ ( ( 𝐹 ‘ ( 𝑁 − 1 ) ) ≠ ( 𝐹 ‘ 0 ) → 𝑁 ≠ 1 ) |
| 30 |
24 29
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 ) → 𝑁 ≠ 1 ) |
| 31 |
|
eluz2b3 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) ) |
| 32 |
20 30 31
|
sylanbrc |
⊢ ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ ( 𝐹 ‘ ( 𝑁 − 1 ) ) = 0 ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |