| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p |  |-  .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) | 
						
							| 2 |  | signsv.w |  |-  W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } | 
						
							| 3 |  | signsv.t |  |-  T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v |  |-  V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) | 
						
							| 5 |  | signstfveq0.1 |  |-  N = ( # ` F ) | 
						
							| 6 |  | simpll |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( F ` ( N - 1 ) ) = 0 ) -> F e. ( Word RR \ { (/) } ) ) | 
						
							| 7 | 6 | eldifad |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( F ` ( N - 1 ) ) = 0 ) -> F e. Word RR ) | 
						
							| 8 |  | lencl |  |-  ( F e. Word RR -> ( # ` F ) e. NN0 ) | 
						
							| 9 | 5 8 | eqeltrid |  |-  ( F e. Word RR -> N e. NN0 ) | 
						
							| 10 | 7 9 | syl |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( F ` ( N - 1 ) ) = 0 ) -> N e. NN0 ) | 
						
							| 11 |  | eldifsn |  |-  ( F e. ( Word RR \ { (/) } ) <-> ( F e. Word RR /\ F =/= (/) ) ) | 
						
							| 12 | 6 11 | sylib |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( F ` ( N - 1 ) ) = 0 ) -> ( F e. Word RR /\ F =/= (/) ) ) | 
						
							| 13 |  | hasheq0 |  |-  ( F e. Word RR -> ( ( # ` F ) = 0 <-> F = (/) ) ) | 
						
							| 14 | 13 | necon3bid |  |-  ( F e. Word RR -> ( ( # ` F ) =/= 0 <-> F =/= (/) ) ) | 
						
							| 15 | 14 | biimpar |  |-  ( ( F e. Word RR /\ F =/= (/) ) -> ( # ` F ) =/= 0 ) | 
						
							| 16 | 5 | neeq1i |  |-  ( N =/= 0 <-> ( # ` F ) =/= 0 ) | 
						
							| 17 | 15 16 | sylibr |  |-  ( ( F e. Word RR /\ F =/= (/) ) -> N =/= 0 ) | 
						
							| 18 | 12 17 | syl |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( F ` ( N - 1 ) ) = 0 ) -> N =/= 0 ) | 
						
							| 19 |  | elnnne0 |  |-  ( N e. NN <-> ( N e. NN0 /\ N =/= 0 ) ) | 
						
							| 20 | 10 18 19 | sylanbrc |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( F ` ( N - 1 ) ) = 0 ) -> N e. NN ) | 
						
							| 21 |  | simplr |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( F ` ( N - 1 ) ) = 0 ) -> ( F ` 0 ) =/= 0 ) | 
						
							| 22 |  | simpr |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( F ` ( N - 1 ) ) = 0 ) -> ( F ` ( N - 1 ) ) = 0 ) | 
						
							| 23 | 21 22 | neeqtrrd |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( F ` ( N - 1 ) ) = 0 ) -> ( F ` 0 ) =/= ( F ` ( N - 1 ) ) ) | 
						
							| 24 | 23 | necomd |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( F ` ( N - 1 ) ) = 0 ) -> ( F ` ( N - 1 ) ) =/= ( F ` 0 ) ) | 
						
							| 25 |  | oveq1 |  |-  ( N = 1 -> ( N - 1 ) = ( 1 - 1 ) ) | 
						
							| 26 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 27 | 25 26 | eqtrdi |  |-  ( N = 1 -> ( N - 1 ) = 0 ) | 
						
							| 28 | 27 | fveq2d |  |-  ( N = 1 -> ( F ` ( N - 1 ) ) = ( F ` 0 ) ) | 
						
							| 29 | 28 | necon3i |  |-  ( ( F ` ( N - 1 ) ) =/= ( F ` 0 ) -> N =/= 1 ) | 
						
							| 30 | 24 29 | syl |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( F ` ( N - 1 ) ) = 0 ) -> N =/= 1 ) | 
						
							| 31 |  | eluz2b3 |  |-  ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ N =/= 1 ) ) | 
						
							| 32 | 20 30 31 | sylanbrc |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( F ` ( N - 1 ) ) = 0 ) -> N e. ( ZZ>= ` 2 ) ) |