Step |
Hyp |
Ref |
Expression |
1 |
|
signsv.p |
|- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) |
2 |
|
signsv.w |
|- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } |
3 |
|
signsv.t |
|- T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) |
4 |
|
signsv.v |
|- V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) |
5 |
|
signstfveq0.1 |
|- N = ( # ` F ) |
6 |
|
simpll |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( F ` ( N - 1 ) ) = 0 ) -> F e. ( Word RR \ { (/) } ) ) |
7 |
6
|
eldifad |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( F ` ( N - 1 ) ) = 0 ) -> F e. Word RR ) |
8 |
|
lencl |
|- ( F e. Word RR -> ( # ` F ) e. NN0 ) |
9 |
5 8
|
eqeltrid |
|- ( F e. Word RR -> N e. NN0 ) |
10 |
7 9
|
syl |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( F ` ( N - 1 ) ) = 0 ) -> N e. NN0 ) |
11 |
|
eldifsn |
|- ( F e. ( Word RR \ { (/) } ) <-> ( F e. Word RR /\ F =/= (/) ) ) |
12 |
6 11
|
sylib |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( F ` ( N - 1 ) ) = 0 ) -> ( F e. Word RR /\ F =/= (/) ) ) |
13 |
|
hasheq0 |
|- ( F e. Word RR -> ( ( # ` F ) = 0 <-> F = (/) ) ) |
14 |
13
|
necon3bid |
|- ( F e. Word RR -> ( ( # ` F ) =/= 0 <-> F =/= (/) ) ) |
15 |
14
|
biimpar |
|- ( ( F e. Word RR /\ F =/= (/) ) -> ( # ` F ) =/= 0 ) |
16 |
5
|
neeq1i |
|- ( N =/= 0 <-> ( # ` F ) =/= 0 ) |
17 |
15 16
|
sylibr |
|- ( ( F e. Word RR /\ F =/= (/) ) -> N =/= 0 ) |
18 |
12 17
|
syl |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( F ` ( N - 1 ) ) = 0 ) -> N =/= 0 ) |
19 |
|
elnnne0 |
|- ( N e. NN <-> ( N e. NN0 /\ N =/= 0 ) ) |
20 |
10 18 19
|
sylanbrc |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( F ` ( N - 1 ) ) = 0 ) -> N e. NN ) |
21 |
|
simplr |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( F ` ( N - 1 ) ) = 0 ) -> ( F ` 0 ) =/= 0 ) |
22 |
|
simpr |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( F ` ( N - 1 ) ) = 0 ) -> ( F ` ( N - 1 ) ) = 0 ) |
23 |
21 22
|
neeqtrrd |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( F ` ( N - 1 ) ) = 0 ) -> ( F ` 0 ) =/= ( F ` ( N - 1 ) ) ) |
24 |
23
|
necomd |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( F ` ( N - 1 ) ) = 0 ) -> ( F ` ( N - 1 ) ) =/= ( F ` 0 ) ) |
25 |
|
oveq1 |
|- ( N = 1 -> ( N - 1 ) = ( 1 - 1 ) ) |
26 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
27 |
25 26
|
eqtrdi |
|- ( N = 1 -> ( N - 1 ) = 0 ) |
28 |
27
|
fveq2d |
|- ( N = 1 -> ( F ` ( N - 1 ) ) = ( F ` 0 ) ) |
29 |
28
|
necon3i |
|- ( ( F ` ( N - 1 ) ) =/= ( F ` 0 ) -> N =/= 1 ) |
30 |
24 29
|
syl |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( F ` ( N - 1 ) ) = 0 ) -> N =/= 1 ) |
31 |
|
eluz2b3 |
|- ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ N =/= 1 ) ) |
32 |
20 30 31
|
sylanbrc |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( F ` ( N - 1 ) ) = 0 ) -> N e. ( ZZ>= ` 2 ) ) |