Step |
Hyp |
Ref |
Expression |
1 |
|
signsv.p |
|- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) |
2 |
|
signsv.w |
|- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } |
3 |
|
signsv.t |
|- T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) |
4 |
|
signsv.v |
|- V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) |
5 |
|
oveq2 |
|- ( g = (/) -> ( F ++ g ) = ( F ++ (/) ) ) |
6 |
5
|
fveq2d |
|- ( g = (/) -> ( T ` ( F ++ g ) ) = ( T ` ( F ++ (/) ) ) ) |
7 |
6
|
fveq1d |
|- ( g = (/) -> ( ( T ` ( F ++ g ) ) ` N ) = ( ( T ` ( F ++ (/) ) ) ` N ) ) |
8 |
7
|
eqeq1d |
|- ( g = (/) -> ( ( ( T ` ( F ++ g ) ) ` N ) = ( ( T ` F ) ` N ) <-> ( ( T ` ( F ++ (/) ) ) ` N ) = ( ( T ` F ) ` N ) ) ) |
9 |
8
|
imbi2d |
|- ( g = (/) -> ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ g ) ) ` N ) = ( ( T ` F ) ` N ) ) <-> ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ (/) ) ) ` N ) = ( ( T ` F ) ` N ) ) ) ) |
10 |
|
oveq2 |
|- ( g = e -> ( F ++ g ) = ( F ++ e ) ) |
11 |
10
|
fveq2d |
|- ( g = e -> ( T ` ( F ++ g ) ) = ( T ` ( F ++ e ) ) ) |
12 |
11
|
fveq1d |
|- ( g = e -> ( ( T ` ( F ++ g ) ) ` N ) = ( ( T ` ( F ++ e ) ) ` N ) ) |
13 |
12
|
eqeq1d |
|- ( g = e -> ( ( ( T ` ( F ++ g ) ) ` N ) = ( ( T ` F ) ` N ) <-> ( ( T ` ( F ++ e ) ) ` N ) = ( ( T ` F ) ` N ) ) ) |
14 |
13
|
imbi2d |
|- ( g = e -> ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ g ) ) ` N ) = ( ( T ` F ) ` N ) ) <-> ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ e ) ) ` N ) = ( ( T ` F ) ` N ) ) ) ) |
15 |
|
oveq2 |
|- ( g = ( e ++ <" k "> ) -> ( F ++ g ) = ( F ++ ( e ++ <" k "> ) ) ) |
16 |
15
|
fveq2d |
|- ( g = ( e ++ <" k "> ) -> ( T ` ( F ++ g ) ) = ( T ` ( F ++ ( e ++ <" k "> ) ) ) ) |
17 |
16
|
fveq1d |
|- ( g = ( e ++ <" k "> ) -> ( ( T ` ( F ++ g ) ) ` N ) = ( ( T ` ( F ++ ( e ++ <" k "> ) ) ) ` N ) ) |
18 |
17
|
eqeq1d |
|- ( g = ( e ++ <" k "> ) -> ( ( ( T ` ( F ++ g ) ) ` N ) = ( ( T ` F ) ` N ) <-> ( ( T ` ( F ++ ( e ++ <" k "> ) ) ) ` N ) = ( ( T ` F ) ` N ) ) ) |
19 |
18
|
imbi2d |
|- ( g = ( e ++ <" k "> ) -> ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ g ) ) ` N ) = ( ( T ` F ) ` N ) ) <-> ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ ( e ++ <" k "> ) ) ) ` N ) = ( ( T ` F ) ` N ) ) ) ) |
20 |
|
oveq2 |
|- ( g = G -> ( F ++ g ) = ( F ++ G ) ) |
21 |
20
|
fveq2d |
|- ( g = G -> ( T ` ( F ++ g ) ) = ( T ` ( F ++ G ) ) ) |
22 |
21
|
fveq1d |
|- ( g = G -> ( ( T ` ( F ++ g ) ) ` N ) = ( ( T ` ( F ++ G ) ) ` N ) ) |
23 |
22
|
eqeq1d |
|- ( g = G -> ( ( ( T ` ( F ++ g ) ) ` N ) = ( ( T ` F ) ` N ) <-> ( ( T ` ( F ++ G ) ) ` N ) = ( ( T ` F ) ` N ) ) ) |
24 |
23
|
imbi2d |
|- ( g = G -> ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ g ) ) ` N ) = ( ( T ` F ) ` N ) ) <-> ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ G ) ) ` N ) = ( ( T ` F ) ` N ) ) ) ) |
25 |
|
ccatrid |
|- ( F e. Word RR -> ( F ++ (/) ) = F ) |
26 |
25
|
fveq2d |
|- ( F e. Word RR -> ( T ` ( F ++ (/) ) ) = ( T ` F ) ) |
27 |
26
|
fveq1d |
|- ( F e. Word RR -> ( ( T ` ( F ++ (/) ) ) ` N ) = ( ( T ` F ) ` N ) ) |
28 |
27
|
adantr |
|- ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ (/) ) ) ` N ) = ( ( T ` F ) ` N ) ) |
29 |
|
s1cl |
|- ( k e. RR -> <" k "> e. Word RR ) |
30 |
|
ccatass |
|- ( ( F e. Word RR /\ e e. Word RR /\ <" k "> e. Word RR ) -> ( ( F ++ e ) ++ <" k "> ) = ( F ++ ( e ++ <" k "> ) ) ) |
31 |
29 30
|
syl3an3 |
|- ( ( F e. Word RR /\ e e. Word RR /\ k e. RR ) -> ( ( F ++ e ) ++ <" k "> ) = ( F ++ ( e ++ <" k "> ) ) ) |
32 |
31
|
3expb |
|- ( ( F e. Word RR /\ ( e e. Word RR /\ k e. RR ) ) -> ( ( F ++ e ) ++ <" k "> ) = ( F ++ ( e ++ <" k "> ) ) ) |
33 |
32
|
adantlr |
|- ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ ( e e. Word RR /\ k e. RR ) ) -> ( ( F ++ e ) ++ <" k "> ) = ( F ++ ( e ++ <" k "> ) ) ) |
34 |
33
|
fveq2d |
|- ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ ( e e. Word RR /\ k e. RR ) ) -> ( T ` ( ( F ++ e ) ++ <" k "> ) ) = ( T ` ( F ++ ( e ++ <" k "> ) ) ) ) |
35 |
34
|
fveq1d |
|- ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ ( e e. Word RR /\ k e. RR ) ) -> ( ( T ` ( ( F ++ e ) ++ <" k "> ) ) ` N ) = ( ( T ` ( F ++ ( e ++ <" k "> ) ) ) ` N ) ) |
36 |
|
ccatcl |
|- ( ( F e. Word RR /\ e e. Word RR ) -> ( F ++ e ) e. Word RR ) |
37 |
36
|
ad2ant2r |
|- ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ ( e e. Word RR /\ k e. RR ) ) -> ( F ++ e ) e. Word RR ) |
38 |
|
simprr |
|- ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ ( e e. Word RR /\ k e. RR ) ) -> k e. RR ) |
39 |
|
lencl |
|- ( F e. Word RR -> ( # ` F ) e. NN0 ) |
40 |
39
|
nn0zd |
|- ( F e. Word RR -> ( # ` F ) e. ZZ ) |
41 |
40
|
adantr |
|- ( ( F e. Word RR /\ e e. Word RR ) -> ( # ` F ) e. ZZ ) |
42 |
|
lencl |
|- ( ( F ++ e ) e. Word RR -> ( # ` ( F ++ e ) ) e. NN0 ) |
43 |
36 42
|
syl |
|- ( ( F e. Word RR /\ e e. Word RR ) -> ( # ` ( F ++ e ) ) e. NN0 ) |
44 |
43
|
nn0zd |
|- ( ( F e. Word RR /\ e e. Word RR ) -> ( # ` ( F ++ e ) ) e. ZZ ) |
45 |
39
|
nn0red |
|- ( F e. Word RR -> ( # ` F ) e. RR ) |
46 |
|
lencl |
|- ( e e. Word RR -> ( # ` e ) e. NN0 ) |
47 |
|
nn0addge1 |
|- ( ( ( # ` F ) e. RR /\ ( # ` e ) e. NN0 ) -> ( # ` F ) <_ ( ( # ` F ) + ( # ` e ) ) ) |
48 |
45 46 47
|
syl2an |
|- ( ( F e. Word RR /\ e e. Word RR ) -> ( # ` F ) <_ ( ( # ` F ) + ( # ` e ) ) ) |
49 |
|
ccatlen |
|- ( ( F e. Word RR /\ e e. Word RR ) -> ( # ` ( F ++ e ) ) = ( ( # ` F ) + ( # ` e ) ) ) |
50 |
48 49
|
breqtrrd |
|- ( ( F e. Word RR /\ e e. Word RR ) -> ( # ` F ) <_ ( # ` ( F ++ e ) ) ) |
51 |
|
eluz2 |
|- ( ( # ` ( F ++ e ) ) e. ( ZZ>= ` ( # ` F ) ) <-> ( ( # ` F ) e. ZZ /\ ( # ` ( F ++ e ) ) e. ZZ /\ ( # ` F ) <_ ( # ` ( F ++ e ) ) ) ) |
52 |
41 44 50 51
|
syl3anbrc |
|- ( ( F e. Word RR /\ e e. Word RR ) -> ( # ` ( F ++ e ) ) e. ( ZZ>= ` ( # ` F ) ) ) |
53 |
|
fzoss2 |
|- ( ( # ` ( F ++ e ) ) e. ( ZZ>= ` ( # ` F ) ) -> ( 0 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` ( F ++ e ) ) ) ) |
54 |
52 53
|
syl |
|- ( ( F e. Word RR /\ e e. Word RR ) -> ( 0 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` ( F ++ e ) ) ) ) |
55 |
54
|
ad2ant2r |
|- ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ ( e e. Word RR /\ k e. RR ) ) -> ( 0 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` ( F ++ e ) ) ) ) |
56 |
|
simplr |
|- ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ ( e e. Word RR /\ k e. RR ) ) -> N e. ( 0 ..^ ( # ` F ) ) ) |
57 |
55 56
|
sseldd |
|- ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ ( e e. Word RR /\ k e. RR ) ) -> N e. ( 0 ..^ ( # ` ( F ++ e ) ) ) ) |
58 |
1 2 3 4
|
signstfvp |
|- ( ( ( F ++ e ) e. Word RR /\ k e. RR /\ N e. ( 0 ..^ ( # ` ( F ++ e ) ) ) ) -> ( ( T ` ( ( F ++ e ) ++ <" k "> ) ) ` N ) = ( ( T ` ( F ++ e ) ) ` N ) ) |
59 |
37 38 57 58
|
syl3anc |
|- ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ ( e e. Word RR /\ k e. RR ) ) -> ( ( T ` ( ( F ++ e ) ++ <" k "> ) ) ` N ) = ( ( T ` ( F ++ e ) ) ` N ) ) |
60 |
35 59
|
eqtr3d |
|- ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ ( e e. Word RR /\ k e. RR ) ) -> ( ( T ` ( F ++ ( e ++ <" k "> ) ) ) ` N ) = ( ( T ` ( F ++ e ) ) ` N ) ) |
61 |
|
id |
|- ( ( ( T ` ( F ++ e ) ) ` N ) = ( ( T ` F ) ` N ) -> ( ( T ` ( F ++ e ) ) ` N ) = ( ( T ` F ) ` N ) ) |
62 |
60 61
|
sylan9eq |
|- ( ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ ( e e. Word RR /\ k e. RR ) ) /\ ( ( T ` ( F ++ e ) ) ` N ) = ( ( T ` F ) ` N ) ) -> ( ( T ` ( F ++ ( e ++ <" k "> ) ) ) ` N ) = ( ( T ` F ) ` N ) ) |
63 |
62
|
ex |
|- ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ ( e e. Word RR /\ k e. RR ) ) -> ( ( ( T ` ( F ++ e ) ) ` N ) = ( ( T ` F ) ` N ) -> ( ( T ` ( F ++ ( e ++ <" k "> ) ) ) ` N ) = ( ( T ` F ) ` N ) ) ) |
64 |
63
|
expcom |
|- ( ( e e. Word RR /\ k e. RR ) -> ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( T ` ( F ++ e ) ) ` N ) = ( ( T ` F ) ` N ) -> ( ( T ` ( F ++ ( e ++ <" k "> ) ) ) ` N ) = ( ( T ` F ) ` N ) ) ) ) |
65 |
64
|
a2d |
|- ( ( e e. Word RR /\ k e. RR ) -> ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ e ) ) ` N ) = ( ( T ` F ) ` N ) ) -> ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ ( e ++ <" k "> ) ) ) ` N ) = ( ( T ` F ) ` N ) ) ) ) |
66 |
9 14 19 24 28 65
|
wrdind |
|- ( G e. Word RR -> ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ G ) ) ` N ) = ( ( T ` F ) ` N ) ) ) |
67 |
66
|
3impib |
|- ( ( G e. Word RR /\ F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ G ) ) ` N ) = ( ( T ` F ) ` N ) ) |
68 |
67
|
3com12 |
|- ( ( F e. Word RR /\ G e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ G ) ) ` N ) = ( ( T ` F ) ` N ) ) |