| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p |  |-  .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) | 
						
							| 2 |  | signsv.w |  |-  W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } | 
						
							| 3 |  | signsv.t |  |-  T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v |  |-  V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) | 
						
							| 5 |  | oveq2 |  |-  ( g = (/) -> ( F ++ g ) = ( F ++ (/) ) ) | 
						
							| 6 | 5 | fveq2d |  |-  ( g = (/) -> ( T ` ( F ++ g ) ) = ( T ` ( F ++ (/) ) ) ) | 
						
							| 7 | 6 | fveq1d |  |-  ( g = (/) -> ( ( T ` ( F ++ g ) ) ` N ) = ( ( T ` ( F ++ (/) ) ) ` N ) ) | 
						
							| 8 | 7 | eqeq1d |  |-  ( g = (/) -> ( ( ( T ` ( F ++ g ) ) ` N ) = ( ( T ` F ) ` N ) <-> ( ( T ` ( F ++ (/) ) ) ` N ) = ( ( T ` F ) ` N ) ) ) | 
						
							| 9 | 8 | imbi2d |  |-  ( g = (/) -> ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ g ) ) ` N ) = ( ( T ` F ) ` N ) ) <-> ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ (/) ) ) ` N ) = ( ( T ` F ) ` N ) ) ) ) | 
						
							| 10 |  | oveq2 |  |-  ( g = e -> ( F ++ g ) = ( F ++ e ) ) | 
						
							| 11 | 10 | fveq2d |  |-  ( g = e -> ( T ` ( F ++ g ) ) = ( T ` ( F ++ e ) ) ) | 
						
							| 12 | 11 | fveq1d |  |-  ( g = e -> ( ( T ` ( F ++ g ) ) ` N ) = ( ( T ` ( F ++ e ) ) ` N ) ) | 
						
							| 13 | 12 | eqeq1d |  |-  ( g = e -> ( ( ( T ` ( F ++ g ) ) ` N ) = ( ( T ` F ) ` N ) <-> ( ( T ` ( F ++ e ) ) ` N ) = ( ( T ` F ) ` N ) ) ) | 
						
							| 14 | 13 | imbi2d |  |-  ( g = e -> ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ g ) ) ` N ) = ( ( T ` F ) ` N ) ) <-> ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ e ) ) ` N ) = ( ( T ` F ) ` N ) ) ) ) | 
						
							| 15 |  | oveq2 |  |-  ( g = ( e ++ <" k "> ) -> ( F ++ g ) = ( F ++ ( e ++ <" k "> ) ) ) | 
						
							| 16 | 15 | fveq2d |  |-  ( g = ( e ++ <" k "> ) -> ( T ` ( F ++ g ) ) = ( T ` ( F ++ ( e ++ <" k "> ) ) ) ) | 
						
							| 17 | 16 | fveq1d |  |-  ( g = ( e ++ <" k "> ) -> ( ( T ` ( F ++ g ) ) ` N ) = ( ( T ` ( F ++ ( e ++ <" k "> ) ) ) ` N ) ) | 
						
							| 18 | 17 | eqeq1d |  |-  ( g = ( e ++ <" k "> ) -> ( ( ( T ` ( F ++ g ) ) ` N ) = ( ( T ` F ) ` N ) <-> ( ( T ` ( F ++ ( e ++ <" k "> ) ) ) ` N ) = ( ( T ` F ) ` N ) ) ) | 
						
							| 19 | 18 | imbi2d |  |-  ( g = ( e ++ <" k "> ) -> ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ g ) ) ` N ) = ( ( T ` F ) ` N ) ) <-> ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ ( e ++ <" k "> ) ) ) ` N ) = ( ( T ` F ) ` N ) ) ) ) | 
						
							| 20 |  | oveq2 |  |-  ( g = G -> ( F ++ g ) = ( F ++ G ) ) | 
						
							| 21 | 20 | fveq2d |  |-  ( g = G -> ( T ` ( F ++ g ) ) = ( T ` ( F ++ G ) ) ) | 
						
							| 22 | 21 | fveq1d |  |-  ( g = G -> ( ( T ` ( F ++ g ) ) ` N ) = ( ( T ` ( F ++ G ) ) ` N ) ) | 
						
							| 23 | 22 | eqeq1d |  |-  ( g = G -> ( ( ( T ` ( F ++ g ) ) ` N ) = ( ( T ` F ) ` N ) <-> ( ( T ` ( F ++ G ) ) ` N ) = ( ( T ` F ) ` N ) ) ) | 
						
							| 24 | 23 | imbi2d |  |-  ( g = G -> ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ g ) ) ` N ) = ( ( T ` F ) ` N ) ) <-> ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ G ) ) ` N ) = ( ( T ` F ) ` N ) ) ) ) | 
						
							| 25 |  | ccatrid |  |-  ( F e. Word RR -> ( F ++ (/) ) = F ) | 
						
							| 26 | 25 | fveq2d |  |-  ( F e. Word RR -> ( T ` ( F ++ (/) ) ) = ( T ` F ) ) | 
						
							| 27 | 26 | fveq1d |  |-  ( F e. Word RR -> ( ( T ` ( F ++ (/) ) ) ` N ) = ( ( T ` F ) ` N ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ (/) ) ) ` N ) = ( ( T ` F ) ` N ) ) | 
						
							| 29 |  | s1cl |  |-  ( k e. RR -> <" k "> e. Word RR ) | 
						
							| 30 |  | ccatass |  |-  ( ( F e. Word RR /\ e e. Word RR /\ <" k "> e. Word RR ) -> ( ( F ++ e ) ++ <" k "> ) = ( F ++ ( e ++ <" k "> ) ) ) | 
						
							| 31 | 29 30 | syl3an3 |  |-  ( ( F e. Word RR /\ e e. Word RR /\ k e. RR ) -> ( ( F ++ e ) ++ <" k "> ) = ( F ++ ( e ++ <" k "> ) ) ) | 
						
							| 32 | 31 | 3expb |  |-  ( ( F e. Word RR /\ ( e e. Word RR /\ k e. RR ) ) -> ( ( F ++ e ) ++ <" k "> ) = ( F ++ ( e ++ <" k "> ) ) ) | 
						
							| 33 | 32 | adantlr |  |-  ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ ( e e. Word RR /\ k e. RR ) ) -> ( ( F ++ e ) ++ <" k "> ) = ( F ++ ( e ++ <" k "> ) ) ) | 
						
							| 34 | 33 | fveq2d |  |-  ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ ( e e. Word RR /\ k e. RR ) ) -> ( T ` ( ( F ++ e ) ++ <" k "> ) ) = ( T ` ( F ++ ( e ++ <" k "> ) ) ) ) | 
						
							| 35 | 34 | fveq1d |  |-  ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ ( e e. Word RR /\ k e. RR ) ) -> ( ( T ` ( ( F ++ e ) ++ <" k "> ) ) ` N ) = ( ( T ` ( F ++ ( e ++ <" k "> ) ) ) ` N ) ) | 
						
							| 36 |  | ccatcl |  |-  ( ( F e. Word RR /\ e e. Word RR ) -> ( F ++ e ) e. Word RR ) | 
						
							| 37 | 36 | ad2ant2r |  |-  ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ ( e e. Word RR /\ k e. RR ) ) -> ( F ++ e ) e. Word RR ) | 
						
							| 38 |  | simprr |  |-  ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ ( e e. Word RR /\ k e. RR ) ) -> k e. RR ) | 
						
							| 39 |  | lencl |  |-  ( F e. Word RR -> ( # ` F ) e. NN0 ) | 
						
							| 40 | 39 | nn0zd |  |-  ( F e. Word RR -> ( # ` F ) e. ZZ ) | 
						
							| 41 | 40 | adantr |  |-  ( ( F e. Word RR /\ e e. Word RR ) -> ( # ` F ) e. ZZ ) | 
						
							| 42 |  | lencl |  |-  ( ( F ++ e ) e. Word RR -> ( # ` ( F ++ e ) ) e. NN0 ) | 
						
							| 43 | 36 42 | syl |  |-  ( ( F e. Word RR /\ e e. Word RR ) -> ( # ` ( F ++ e ) ) e. NN0 ) | 
						
							| 44 | 43 | nn0zd |  |-  ( ( F e. Word RR /\ e e. Word RR ) -> ( # ` ( F ++ e ) ) e. ZZ ) | 
						
							| 45 | 39 | nn0red |  |-  ( F e. Word RR -> ( # ` F ) e. RR ) | 
						
							| 46 |  | lencl |  |-  ( e e. Word RR -> ( # ` e ) e. NN0 ) | 
						
							| 47 |  | nn0addge1 |  |-  ( ( ( # ` F ) e. RR /\ ( # ` e ) e. NN0 ) -> ( # ` F ) <_ ( ( # ` F ) + ( # ` e ) ) ) | 
						
							| 48 | 45 46 47 | syl2an |  |-  ( ( F e. Word RR /\ e e. Word RR ) -> ( # ` F ) <_ ( ( # ` F ) + ( # ` e ) ) ) | 
						
							| 49 |  | ccatlen |  |-  ( ( F e. Word RR /\ e e. Word RR ) -> ( # ` ( F ++ e ) ) = ( ( # ` F ) + ( # ` e ) ) ) | 
						
							| 50 | 48 49 | breqtrrd |  |-  ( ( F e. Word RR /\ e e. Word RR ) -> ( # ` F ) <_ ( # ` ( F ++ e ) ) ) | 
						
							| 51 |  | eluz2 |  |-  ( ( # ` ( F ++ e ) ) e. ( ZZ>= ` ( # ` F ) ) <-> ( ( # ` F ) e. ZZ /\ ( # ` ( F ++ e ) ) e. ZZ /\ ( # ` F ) <_ ( # ` ( F ++ e ) ) ) ) | 
						
							| 52 | 41 44 50 51 | syl3anbrc |  |-  ( ( F e. Word RR /\ e e. Word RR ) -> ( # ` ( F ++ e ) ) e. ( ZZ>= ` ( # ` F ) ) ) | 
						
							| 53 |  | fzoss2 |  |-  ( ( # ` ( F ++ e ) ) e. ( ZZ>= ` ( # ` F ) ) -> ( 0 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` ( F ++ e ) ) ) ) | 
						
							| 54 | 52 53 | syl |  |-  ( ( F e. Word RR /\ e e. Word RR ) -> ( 0 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` ( F ++ e ) ) ) ) | 
						
							| 55 | 54 | ad2ant2r |  |-  ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ ( e e. Word RR /\ k e. RR ) ) -> ( 0 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` ( F ++ e ) ) ) ) | 
						
							| 56 |  | simplr |  |-  ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ ( e e. Word RR /\ k e. RR ) ) -> N e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 57 | 55 56 | sseldd |  |-  ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ ( e e. Word RR /\ k e. RR ) ) -> N e. ( 0 ..^ ( # ` ( F ++ e ) ) ) ) | 
						
							| 58 | 1 2 3 4 | signstfvp |  |-  ( ( ( F ++ e ) e. Word RR /\ k e. RR /\ N e. ( 0 ..^ ( # ` ( F ++ e ) ) ) ) -> ( ( T ` ( ( F ++ e ) ++ <" k "> ) ) ` N ) = ( ( T ` ( F ++ e ) ) ` N ) ) | 
						
							| 59 | 37 38 57 58 | syl3anc |  |-  ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ ( e e. Word RR /\ k e. RR ) ) -> ( ( T ` ( ( F ++ e ) ++ <" k "> ) ) ` N ) = ( ( T ` ( F ++ e ) ) ` N ) ) | 
						
							| 60 | 35 59 | eqtr3d |  |-  ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ ( e e. Word RR /\ k e. RR ) ) -> ( ( T ` ( F ++ ( e ++ <" k "> ) ) ) ` N ) = ( ( T ` ( F ++ e ) ) ` N ) ) | 
						
							| 61 |  | id |  |-  ( ( ( T ` ( F ++ e ) ) ` N ) = ( ( T ` F ) ` N ) -> ( ( T ` ( F ++ e ) ) ` N ) = ( ( T ` F ) ` N ) ) | 
						
							| 62 | 60 61 | sylan9eq |  |-  ( ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ ( e e. Word RR /\ k e. RR ) ) /\ ( ( T ` ( F ++ e ) ) ` N ) = ( ( T ` F ) ` N ) ) -> ( ( T ` ( F ++ ( e ++ <" k "> ) ) ) ` N ) = ( ( T ` F ) ` N ) ) | 
						
							| 63 | 62 | ex |  |-  ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ ( e e. Word RR /\ k e. RR ) ) -> ( ( ( T ` ( F ++ e ) ) ` N ) = ( ( T ` F ) ` N ) -> ( ( T ` ( F ++ ( e ++ <" k "> ) ) ) ` N ) = ( ( T ` F ) ` N ) ) ) | 
						
							| 64 | 63 | expcom |  |-  ( ( e e. Word RR /\ k e. RR ) -> ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( T ` ( F ++ e ) ) ` N ) = ( ( T ` F ) ` N ) -> ( ( T ` ( F ++ ( e ++ <" k "> ) ) ) ` N ) = ( ( T ` F ) ` N ) ) ) ) | 
						
							| 65 | 64 | a2d |  |-  ( ( e e. Word RR /\ k e. RR ) -> ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ e ) ) ` N ) = ( ( T ` F ) ` N ) ) -> ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ ( e ++ <" k "> ) ) ) ` N ) = ( ( T ` F ) ` N ) ) ) ) | 
						
							| 66 | 9 14 19 24 28 65 | wrdind |  |-  ( G e. Word RR -> ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ G ) ) ` N ) = ( ( T ` F ) ` N ) ) ) | 
						
							| 67 | 66 | 3impib |  |-  ( ( G e. Word RR /\ F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ G ) ) ` N ) = ( ( T ` F ) ` N ) ) | 
						
							| 68 | 67 | 3com12 |  |-  ( ( F e. Word RR /\ G e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` ( F ++ G ) ) ` N ) = ( ( T ` F ) ` N ) ) |