| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p | ⊢  ⨣   =  ( 𝑎  ∈  { - 1 ,  0 ,  1 } ,  𝑏  ∈  { - 1 ,  0 ,  1 }  ↦  if ( 𝑏  =  0 ,  𝑎 ,  𝑏 ) ) | 
						
							| 2 |  | signsv.w | ⊢ 𝑊  =  { 〈 ( Base ‘ ndx ) ,  { - 1 ,  0 ,  1 } 〉 ,  〈 ( +g ‘ ndx ) ,   ⨣  〉 } | 
						
							| 3 |  | signsv.t | ⊢ 𝑇  =  ( 𝑓  ∈  Word  ℝ  ↦  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) )  ↦  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑛 )  ↦  ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v | ⊢ 𝑉  =  ( 𝑓  ∈  Word  ℝ  ↦  Σ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 ) ) | 
						
							| 5 |  | simpl1 | ⊢ ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝐾  ∈  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  𝐹  ∈  Word  ℝ ) | 
						
							| 6 |  | s1cl | ⊢ ( 𝐾  ∈  ℝ  →  〈“ 𝐾 ”〉  ∈  Word  ℝ ) | 
						
							| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐾  ∈  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  〈“ 𝐾 ”〉  ∈  Word  ℝ ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝐾  ∈  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  〈“ 𝐾 ”〉  ∈  Word  ℝ ) | 
						
							| 9 |  | fzssfzo | ⊢ ( 𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 0 ... 𝑁 )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 10 | 9 | 3ad2ant3 | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐾  ∈  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 0 ... 𝑁 )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 11 | 10 | sselda | ⊢ ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝐾  ∈  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 12 |  | ccatval1 | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  〈“ 𝐾 ”〉  ∈  Word  ℝ  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝐹  ++  〈“ 𝐾 ”〉 ) ‘ 𝑖 )  =  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 13 | 5 8 11 12 | syl3anc | ⊢ ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝐾  ∈  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝐹  ++  〈“ 𝐾 ”〉 ) ‘ 𝑖 )  =  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝐾  ∈  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  ( sgn ‘ ( ( 𝐹  ++  〈“ 𝐾 ”〉 ) ‘ 𝑖 ) )  =  ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 15 | 14 | mpteq2dva | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐾  ∈  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑖  ∈  ( 0 ... 𝑁 )  ↦  ( sgn ‘ ( ( 𝐹  ++  〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) )  =  ( 𝑖  ∈  ( 0 ... 𝑁 )  ↦  ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐾  ∈  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑁 )  ↦  ( sgn ‘ ( ( 𝐹  ++  〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) ) )  =  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑁 )  ↦  ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) | 
						
							| 17 |  | ccatws1cl | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐾  ∈  ℝ )  →  ( 𝐹  ++  〈“ 𝐾 ”〉 )  ∈  Word  ℝ ) | 
						
							| 18 | 17 | 3adant3 | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐾  ∈  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹  ++  〈“ 𝐾 ”〉 )  ∈  Word  ℝ ) | 
						
							| 19 |  | lencl | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 20 | 19 | nn0zd | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( ♯ ‘ 𝐹 )  ∈  ℤ ) | 
						
							| 21 | 20 | uzidd | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( ♯ ‘ 𝐹 )  ∈  ( ℤ≥ ‘ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 22 |  | peano2uz | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ( ℤ≥ ‘ ( ♯ ‘ 𝐹 ) )  →  ( ( ♯ ‘ 𝐹 )  +  1 )  ∈  ( ℤ≥ ‘ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 23 |  | fzoss2 | ⊢ ( ( ( ♯ ‘ 𝐹 )  +  1 )  ∈  ( ℤ≥ ‘ ( ♯ ‘ 𝐹 ) )  →  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ⊆  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  +  1 ) ) ) | 
						
							| 24 | 21 22 23 | 3syl | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ⊆  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  +  1 ) ) ) | 
						
							| 25 | 24 | sselda | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  𝑁  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  +  1 ) ) ) | 
						
							| 26 | 25 | 3adant2 | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐾  ∈  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  𝑁  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  +  1 ) ) ) | 
						
							| 27 |  | ccatlen | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  〈“ 𝐾 ”〉  ∈  Word  ℝ )  →  ( ♯ ‘ ( 𝐹  ++  〈“ 𝐾 ”〉 ) )  =  ( ( ♯ ‘ 𝐹 )  +  ( ♯ ‘ 〈“ 𝐾 ”〉 ) ) ) | 
						
							| 28 | 6 27 | sylan2 | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐾  ∈  ℝ )  →  ( ♯ ‘ ( 𝐹  ++  〈“ 𝐾 ”〉 ) )  =  ( ( ♯ ‘ 𝐹 )  +  ( ♯ ‘ 〈“ 𝐾 ”〉 ) ) ) | 
						
							| 29 | 28 | 3adant3 | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐾  ∈  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ♯ ‘ ( 𝐹  ++  〈“ 𝐾 ”〉 ) )  =  ( ( ♯ ‘ 𝐹 )  +  ( ♯ ‘ 〈“ 𝐾 ”〉 ) ) ) | 
						
							| 30 |  | s1len | ⊢ ( ♯ ‘ 〈“ 𝐾 ”〉 )  =  1 | 
						
							| 31 | 30 | oveq2i | ⊢ ( ( ♯ ‘ 𝐹 )  +  ( ♯ ‘ 〈“ 𝐾 ”〉 ) )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) | 
						
							| 32 | 29 31 | eqtrdi | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐾  ∈  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ♯ ‘ ( 𝐹  ++  〈“ 𝐾 ”〉 ) )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) ) | 
						
							| 33 | 32 | oveq2d | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐾  ∈  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 0 ..^ ( ♯ ‘ ( 𝐹  ++  〈“ 𝐾 ”〉 ) ) )  =  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  +  1 ) ) ) | 
						
							| 34 | 26 33 | eleqtrrd | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐾  ∈  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  𝑁  ∈  ( 0 ..^ ( ♯ ‘ ( 𝐹  ++  〈“ 𝐾 ”〉 ) ) ) ) | 
						
							| 35 | 1 2 3 4 | signstfval | ⊢ ( ( ( 𝐹  ++  〈“ 𝐾 ”〉 )  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ ( 𝐹  ++  〈“ 𝐾 ”〉 ) ) ) )  →  ( ( 𝑇 ‘ ( 𝐹  ++  〈“ 𝐾 ”〉 ) ) ‘ 𝑁 )  =  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑁 )  ↦  ( sgn ‘ ( ( 𝐹  ++  〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) ) ) ) | 
						
							| 36 | 18 34 35 | syl2anc | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐾  ∈  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ ( 𝐹  ++  〈“ 𝐾 ”〉 ) ) ‘ 𝑁 )  =  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑁 )  ↦  ( sgn ‘ ( ( 𝐹  ++  〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) ) ) ) | 
						
							| 37 | 1 2 3 4 | signstfval | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 )  =  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑁 )  ↦  ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) | 
						
							| 38 | 37 | 3adant2 | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐾  ∈  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 )  =  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑁 )  ↦  ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) | 
						
							| 39 | 16 36 38 | 3eqtr4d | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐾  ∈  ℝ  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ ( 𝐹  ++  〈“ 𝐾 ”〉 ) ) ‘ 𝑁 )  =  ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) |