Step |
Hyp |
Ref |
Expression |
1 |
|
signsv.p |
⊢ ⨣ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) ) |
2 |
|
signsv.w |
⊢ 𝑊 = { 〈 ( Base ‘ ndx ) , { - 1 , 0 , 1 } 〉 , 〈 ( +g ‘ ndx ) , ⨣ 〉 } |
3 |
|
signsv.t |
⊢ 𝑇 = ( 𝑓 ∈ Word ℝ ↦ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ↦ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) |
4 |
|
signsv.v |
⊢ 𝑉 = ( 𝑓 ∈ Word ℝ ↦ Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) ) |
5 |
|
simpl1 |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → 𝐹 ∈ Word ℝ ) |
6 |
|
s1cl |
⊢ ( 𝐾 ∈ ℝ → 〈“ 𝐾 ”〉 ∈ Word ℝ ) |
7 |
6
|
3ad2ant2 |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 〈“ 𝐾 ”〉 ∈ Word ℝ ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → 〈“ 𝐾 ”〉 ∈ Word ℝ ) |
9 |
|
fzssfzo |
⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 0 ... 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
10 |
9
|
3ad2ant3 |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 0 ... 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
11 |
10
|
sselda |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
12 |
|
ccatval1 |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 〈“ 𝐾 ”〉 ∈ Word ℝ ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) = ( 𝐹 ‘ 𝑖 ) ) |
13 |
5 8 11 12
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) = ( 𝐹 ‘ 𝑖 ) ) |
14 |
13
|
fveq2d |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → ( sgn ‘ ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) = ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
15 |
14
|
mpteq2dva |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ ( sgn ‘ ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) ) = ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
16 |
15
|
oveq2d |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ ( sgn ‘ ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) ) ) = ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) |
17 |
|
ccatws1cl |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) → ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ∈ Word ℝ ) |
18 |
17
|
3adant3 |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ∈ Word ℝ ) |
19 |
|
lencl |
⊢ ( 𝐹 ∈ Word ℝ → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
20 |
19
|
nn0zd |
⊢ ( 𝐹 ∈ Word ℝ → ( ♯ ‘ 𝐹 ) ∈ ℤ ) |
21 |
20
|
uzidd |
⊢ ( 𝐹 ∈ Word ℝ → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝐹 ) ) ) |
22 |
|
peano2uz |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝐹 ) ) → ( ( ♯ ‘ 𝐹 ) + 1 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝐹 ) ) ) |
23 |
|
fzoss2 |
⊢ ( ( ( ♯ ‘ 𝐹 ) + 1 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝐹 ) ) → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
24 |
21 22 23
|
3syl |
⊢ ( 𝐹 ∈ Word ℝ → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
25 |
24
|
sselda |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑁 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
26 |
25
|
3adant2 |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑁 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
27 |
|
ccatlen |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 〈“ 𝐾 ”〉 ∈ Word ℝ ) → ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ 〈“ 𝐾 ”〉 ) ) ) |
28 |
6 27
|
sylan2 |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) → ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ 〈“ 𝐾 ”〉 ) ) ) |
29 |
28
|
3adant3 |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ 〈“ 𝐾 ”〉 ) ) ) |
30 |
|
s1len |
⊢ ( ♯ ‘ 〈“ 𝐾 ”〉 ) = 1 |
31 |
30
|
oveq2i |
⊢ ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ 〈“ 𝐾 ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + 1 ) |
32 |
29 31
|
eqtrdi |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) |
33 |
32
|
oveq2d |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
34 |
26 33
|
eleqtrrd |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ) ) ) |
35 |
1 2 3 4
|
signstfval |
⊢ ( ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ) ) ) → ( ( 𝑇 ‘ ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ) ‘ 𝑁 ) = ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ ( sgn ‘ ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) ) ) ) |
36 |
18 34 35
|
syl2anc |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑇 ‘ ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ) ‘ 𝑁 ) = ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ ( sgn ‘ ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) ) ) ) |
37 |
1 2 3 4
|
signstfval |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) = ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) |
38 |
37
|
3adant2 |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) = ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) |
39 |
16 36 38
|
3eqtr4d |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑇 ‘ ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ) ‘ 𝑁 ) = ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ) |