Metamath Proof Explorer


Theorem signstfvp

Description: Zero-skipping sign in a word compared to a shorter word. (Contributed by Thierry Arnoux, 8-Oct-2018)

Ref Expression
Hypotheses signsv.p ˙=a101,b101ifb=0ab
signsv.w W=Basendx101+ndx˙
signsv.t T=fWordn0..^fWi=0nsgnfi
signsv.v V=fWordj1..^fifTfjTfj110
Assertion signstfvp FWordKN0..^FTF++⟨“K”⟩N=TFN

Proof

Step Hyp Ref Expression
1 signsv.p ˙=a101,b101ifb=0ab
2 signsv.w W=Basendx101+ndx˙
3 signsv.t T=fWordn0..^fWi=0nsgnfi
4 signsv.v V=fWordj1..^fifTfjTfj110
5 simpl1 FWordKN0..^Fi0NFWord
6 s1cl K⟨“K”⟩Word
7 6 3ad2ant2 FWordKN0..^F⟨“K”⟩Word
8 7 adantr FWordKN0..^Fi0N⟨“K”⟩Word
9 fzssfzo N0..^F0N0..^F
10 9 3ad2ant3 FWordKN0..^F0N0..^F
11 10 sselda FWordKN0..^Fi0Ni0..^F
12 ccatval1 FWord⟨“K”⟩Wordi0..^FF++⟨“K”⟩i=Fi
13 5 8 11 12 syl3anc FWordKN0..^Fi0NF++⟨“K”⟩i=Fi
14 13 fveq2d FWordKN0..^Fi0NsgnF++⟨“K”⟩i=sgnFi
15 14 mpteq2dva FWordKN0..^Fi0NsgnF++⟨“K”⟩i=i0NsgnFi
16 15 oveq2d FWordKN0..^FWi=0NsgnF++⟨“K”⟩i=Wi=0NsgnFi
17 ccatws1cl FWordKF++⟨“K”⟩Word
18 17 3adant3 FWordKN0..^FF++⟨“K”⟩Word
19 lencl FWordF0
20 19 nn0zd FWordF
21 20 uzidd FWordFF
22 peano2uz FFF+1F
23 fzoss2 F+1F0..^F0..^F+1
24 21 22 23 3syl FWord0..^F0..^F+1
25 24 sselda FWordN0..^FN0..^F+1
26 25 3adant2 FWordKN0..^FN0..^F+1
27 ccatlen FWord⟨“K”⟩WordF++⟨“K”⟩=F+⟨“K”⟩
28 6 27 sylan2 FWordKF++⟨“K”⟩=F+⟨“K”⟩
29 28 3adant3 FWordKN0..^FF++⟨“K”⟩=F+⟨“K”⟩
30 s1len ⟨“K”⟩=1
31 30 oveq2i F+⟨“K”⟩=F+1
32 29 31 eqtrdi FWordKN0..^FF++⟨“K”⟩=F+1
33 32 oveq2d FWordKN0..^F0..^F++⟨“K”⟩=0..^F+1
34 26 33 eleqtrrd FWordKN0..^FN0..^F++⟨“K”⟩
35 1 2 3 4 signstfval F++⟨“K”⟩WordN0..^F++⟨“K”⟩TF++⟨“K”⟩N=Wi=0NsgnF++⟨“K”⟩i
36 18 34 35 syl2anc FWordKN0..^FTF++⟨“K”⟩N=Wi=0NsgnF++⟨“K”⟩i
37 1 2 3 4 signstfval FWordN0..^FTFN=Wi=0NsgnFi
38 37 3adant2 FWordKN0..^FTFN=Wi=0NsgnFi
39 16 36 38 3eqtr4d FWordKN0..^FTF++⟨“K”⟩N=TFN