| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p |  |-  .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) | 
						
							| 2 |  | signsv.w |  |-  W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } | 
						
							| 3 |  | signsv.t |  |-  T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v |  |-  V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) | 
						
							| 5 |  | simpll |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> F e. ( Word RR \ { (/) } ) ) | 
						
							| 6 | 5 | eldifad |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> F e. Word RR ) | 
						
							| 7 |  | eldifsni |  |-  ( F e. ( Word RR \ { (/) } ) -> F =/= (/) ) | 
						
							| 8 | 7 | ad2antrr |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> F =/= (/) ) | 
						
							| 9 |  | simplr |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` 0 ) =/= 0 ) | 
						
							| 10 | 8 9 | jca |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( F =/= (/) /\ ( F ` 0 ) =/= 0 ) ) | 
						
							| 11 |  | simpr |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> N e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 12 |  | fveq2 |  |-  ( m = N -> ( ( T ` F ) ` m ) = ( ( T ` F ) ` N ) ) | 
						
							| 13 | 12 | neeq1d |  |-  ( m = N -> ( ( ( T ` F ) ` m ) =/= 0 <-> ( ( T ` F ) ` N ) =/= 0 ) ) | 
						
							| 14 |  | neeq1 |  |-  ( g = (/) -> ( g =/= (/) <-> (/) =/= (/) ) ) | 
						
							| 15 |  | fveq1 |  |-  ( g = (/) -> ( g ` 0 ) = ( (/) ` 0 ) ) | 
						
							| 16 | 15 | neeq1d |  |-  ( g = (/) -> ( ( g ` 0 ) =/= 0 <-> ( (/) ` 0 ) =/= 0 ) ) | 
						
							| 17 | 14 16 | anbi12d |  |-  ( g = (/) -> ( ( g =/= (/) /\ ( g ` 0 ) =/= 0 ) <-> ( (/) =/= (/) /\ ( (/) ` 0 ) =/= 0 ) ) ) | 
						
							| 18 |  | fveq2 |  |-  ( g = (/) -> ( # ` g ) = ( # ` (/) ) ) | 
						
							| 19 | 18 | oveq2d |  |-  ( g = (/) -> ( 0 ..^ ( # ` g ) ) = ( 0 ..^ ( # ` (/) ) ) ) | 
						
							| 20 |  | fveq2 |  |-  ( g = (/) -> ( T ` g ) = ( T ` (/) ) ) | 
						
							| 21 | 20 | fveq1d |  |-  ( g = (/) -> ( ( T ` g ) ` m ) = ( ( T ` (/) ) ` m ) ) | 
						
							| 22 | 21 | neeq1d |  |-  ( g = (/) -> ( ( ( T ` g ) ` m ) =/= 0 <-> ( ( T ` (/) ) ` m ) =/= 0 ) ) | 
						
							| 23 | 19 22 | raleqbidv |  |-  ( g = (/) -> ( A. m e. ( 0 ..^ ( # ` g ) ) ( ( T ` g ) ` m ) =/= 0 <-> A. m e. ( 0 ..^ ( # ` (/) ) ) ( ( T ` (/) ) ` m ) =/= 0 ) ) | 
						
							| 24 | 17 23 | imbi12d |  |-  ( g = (/) -> ( ( ( g =/= (/) /\ ( g ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` g ) ) ( ( T ` g ) ` m ) =/= 0 ) <-> ( ( (/) =/= (/) /\ ( (/) ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` (/) ) ) ( ( T ` (/) ) ` m ) =/= 0 ) ) ) | 
						
							| 25 |  | neeq1 |  |-  ( g = e -> ( g =/= (/) <-> e =/= (/) ) ) | 
						
							| 26 |  | fveq1 |  |-  ( g = e -> ( g ` 0 ) = ( e ` 0 ) ) | 
						
							| 27 | 26 | neeq1d |  |-  ( g = e -> ( ( g ` 0 ) =/= 0 <-> ( e ` 0 ) =/= 0 ) ) | 
						
							| 28 | 25 27 | anbi12d |  |-  ( g = e -> ( ( g =/= (/) /\ ( g ` 0 ) =/= 0 ) <-> ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) ) ) | 
						
							| 29 |  | fveq2 |  |-  ( g = e -> ( # ` g ) = ( # ` e ) ) | 
						
							| 30 | 29 | oveq2d |  |-  ( g = e -> ( 0 ..^ ( # ` g ) ) = ( 0 ..^ ( # ` e ) ) ) | 
						
							| 31 |  | fveq2 |  |-  ( g = e -> ( T ` g ) = ( T ` e ) ) | 
						
							| 32 | 31 | fveq1d |  |-  ( g = e -> ( ( T ` g ) ` m ) = ( ( T ` e ) ` m ) ) | 
						
							| 33 | 32 | neeq1d |  |-  ( g = e -> ( ( ( T ` g ) ` m ) =/= 0 <-> ( ( T ` e ) ` m ) =/= 0 ) ) | 
						
							| 34 | 30 33 | raleqbidv |  |-  ( g = e -> ( A. m e. ( 0 ..^ ( # ` g ) ) ( ( T ` g ) ` m ) =/= 0 <-> A. m e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` m ) =/= 0 ) ) | 
						
							| 35 | 28 34 | imbi12d |  |-  ( g = e -> ( ( ( g =/= (/) /\ ( g ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` g ) ) ( ( T ` g ) ` m ) =/= 0 ) <-> ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` m ) =/= 0 ) ) ) | 
						
							| 36 |  | neeq1 |  |-  ( g = ( e ++ <" k "> ) -> ( g =/= (/) <-> ( e ++ <" k "> ) =/= (/) ) ) | 
						
							| 37 |  | fveq1 |  |-  ( g = ( e ++ <" k "> ) -> ( g ` 0 ) = ( ( e ++ <" k "> ) ` 0 ) ) | 
						
							| 38 | 37 | neeq1d |  |-  ( g = ( e ++ <" k "> ) -> ( ( g ` 0 ) =/= 0 <-> ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) | 
						
							| 39 | 36 38 | anbi12d |  |-  ( g = ( e ++ <" k "> ) -> ( ( g =/= (/) /\ ( g ` 0 ) =/= 0 ) <-> ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) ) | 
						
							| 40 |  | fveq2 |  |-  ( g = ( e ++ <" k "> ) -> ( # ` g ) = ( # ` ( e ++ <" k "> ) ) ) | 
						
							| 41 | 40 | oveq2d |  |-  ( g = ( e ++ <" k "> ) -> ( 0 ..^ ( # ` g ) ) = ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) | 
						
							| 42 |  | fveq2 |  |-  ( g = ( e ++ <" k "> ) -> ( T ` g ) = ( T ` ( e ++ <" k "> ) ) ) | 
						
							| 43 | 42 | fveq1d |  |-  ( g = ( e ++ <" k "> ) -> ( ( T ` g ) ` m ) = ( ( T ` ( e ++ <" k "> ) ) ` m ) ) | 
						
							| 44 | 43 | neeq1d |  |-  ( g = ( e ++ <" k "> ) -> ( ( ( T ` g ) ` m ) =/= 0 <-> ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) ) | 
						
							| 45 | 41 44 | raleqbidv |  |-  ( g = ( e ++ <" k "> ) -> ( A. m e. ( 0 ..^ ( # ` g ) ) ( ( T ` g ) ` m ) =/= 0 <-> A. m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) ) | 
						
							| 46 | 39 45 | imbi12d |  |-  ( g = ( e ++ <" k "> ) -> ( ( ( g =/= (/) /\ ( g ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` g ) ) ( ( T ` g ) ` m ) =/= 0 ) <-> ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) ) ) | 
						
							| 47 |  | neeq1 |  |-  ( g = F -> ( g =/= (/) <-> F =/= (/) ) ) | 
						
							| 48 |  | fveq1 |  |-  ( g = F -> ( g ` 0 ) = ( F ` 0 ) ) | 
						
							| 49 | 48 | neeq1d |  |-  ( g = F -> ( ( g ` 0 ) =/= 0 <-> ( F ` 0 ) =/= 0 ) ) | 
						
							| 50 | 47 49 | anbi12d |  |-  ( g = F -> ( ( g =/= (/) /\ ( g ` 0 ) =/= 0 ) <-> ( F =/= (/) /\ ( F ` 0 ) =/= 0 ) ) ) | 
						
							| 51 |  | fveq2 |  |-  ( g = F -> ( # ` g ) = ( # ` F ) ) | 
						
							| 52 | 51 | oveq2d |  |-  ( g = F -> ( 0 ..^ ( # ` g ) ) = ( 0 ..^ ( # ` F ) ) ) | 
						
							| 53 |  | fveq2 |  |-  ( g = F -> ( T ` g ) = ( T ` F ) ) | 
						
							| 54 | 53 | fveq1d |  |-  ( g = F -> ( ( T ` g ) ` m ) = ( ( T ` F ) ` m ) ) | 
						
							| 55 | 54 | neeq1d |  |-  ( g = F -> ( ( ( T ` g ) ` m ) =/= 0 <-> ( ( T ` F ) ` m ) =/= 0 ) ) | 
						
							| 56 | 52 55 | raleqbidv |  |-  ( g = F -> ( A. m e. ( 0 ..^ ( # ` g ) ) ( ( T ` g ) ` m ) =/= 0 <-> A. m e. ( 0 ..^ ( # ` F ) ) ( ( T ` F ) ` m ) =/= 0 ) ) | 
						
							| 57 | 50 56 | imbi12d |  |-  ( g = F -> ( ( ( g =/= (/) /\ ( g ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` g ) ) ( ( T ` g ) ` m ) =/= 0 ) <-> ( ( F =/= (/) /\ ( F ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` F ) ) ( ( T ` F ) ` m ) =/= 0 ) ) ) | 
						
							| 58 |  | neirr |  |-  -. (/) =/= (/) | 
						
							| 59 | 58 | intnanr |  |-  -. ( (/) =/= (/) /\ ( (/) ` 0 ) =/= 0 ) | 
						
							| 60 | 59 | pm2.21i |  |-  ( ( (/) =/= (/) /\ ( (/) ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` (/) ) ) ( ( T ` (/) ) ` m ) =/= 0 ) | 
						
							| 61 |  | fveq2 |  |-  ( n = m -> ( ( T ` e ) ` n ) = ( ( T ` e ) ` m ) ) | 
						
							| 62 | 61 | neeq1d |  |-  ( n = m -> ( ( ( T ` e ) ` n ) =/= 0 <-> ( ( T ` e ) ` m ) =/= 0 ) ) | 
						
							| 63 | 62 | cbvralvw |  |-  ( A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 <-> A. m e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` m ) =/= 0 ) | 
						
							| 64 | 63 | imbi2i |  |-  ( ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) <-> ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` m ) =/= 0 ) ) | 
						
							| 65 | 64 | anbi2i |  |-  ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) <-> ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` m ) =/= 0 ) ) ) | 
						
							| 66 |  | simplr |  |-  ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e = (/) ) -> m e. ( 0 ..^ ( # ` e ) ) ) | 
						
							| 67 |  | noel |  |-  -. m e. (/) | 
						
							| 68 |  | fveq2 |  |-  ( e = (/) -> ( # ` e ) = ( # ` (/) ) ) | 
						
							| 69 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 70 | 68 69 | eqtrdi |  |-  ( e = (/) -> ( # ` e ) = 0 ) | 
						
							| 71 | 70 | oveq2d |  |-  ( e = (/) -> ( 0 ..^ ( # ` e ) ) = ( 0 ..^ 0 ) ) | 
						
							| 72 |  | fzo0 |  |-  ( 0 ..^ 0 ) = (/) | 
						
							| 73 | 71 72 | eqtrdi |  |-  ( e = (/) -> ( 0 ..^ ( # ` e ) ) = (/) ) | 
						
							| 74 | 73 | eleq2d |  |-  ( e = (/) -> ( m e. ( 0 ..^ ( # ` e ) ) <-> m e. (/) ) ) | 
						
							| 75 | 67 74 | mtbiri |  |-  ( e = (/) -> -. m e. ( 0 ..^ ( # ` e ) ) ) | 
						
							| 76 | 75 | adantl |  |-  ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e = (/) ) -> -. m e. ( 0 ..^ ( # ` e ) ) ) | 
						
							| 77 | 66 76 | pm2.21dd |  |-  ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e = (/) ) -> ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) | 
						
							| 78 |  | simp-6l |  |-  ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> e e. Word RR ) | 
						
							| 79 |  | simp-6r |  |-  ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> k e. RR ) | 
						
							| 80 |  | simplr |  |-  ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> m e. ( 0 ..^ ( # ` e ) ) ) | 
						
							| 81 | 1 2 3 4 | signstfvp |  |-  ( ( e e. Word RR /\ k e. RR /\ m e. ( 0 ..^ ( # ` e ) ) ) -> ( ( T ` ( e ++ <" k "> ) ) ` m ) = ( ( T ` e ) ` m ) ) | 
						
							| 82 | 78 79 80 81 | syl3anc |  |-  ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> ( ( T ` ( e ++ <" k "> ) ) ` m ) = ( ( T ` e ) ` m ) ) | 
						
							| 83 |  | simpr |  |-  ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> e =/= (/) ) | 
						
							| 84 |  | simp-5l |  |-  ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> ( e e. Word RR /\ k e. RR ) ) | 
						
							| 85 |  | simplrr |  |-  ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ ( m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) /\ e =/= (/) ) ) -> ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) | 
						
							| 86 | 85 | 3anassrs |  |-  ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) | 
						
							| 87 |  | simpll |  |-  ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> e e. Word RR ) | 
						
							| 88 |  | s1cl |  |-  ( k e. RR -> <" k "> e. Word RR ) | 
						
							| 89 | 88 | ad2antlr |  |-  ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> <" k "> e. Word RR ) | 
						
							| 90 |  | lennncl |  |-  ( ( e e. Word RR /\ e =/= (/) ) -> ( # ` e ) e. NN ) | 
						
							| 91 | 90 | adantlr |  |-  ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> ( # ` e ) e. NN ) | 
						
							| 92 |  | fzo0end |  |-  ( ( # ` e ) e. NN -> ( ( # ` e ) - 1 ) e. ( 0 ..^ ( # ` e ) ) ) | 
						
							| 93 |  | elfzolt3b |  |-  ( ( ( # ` e ) - 1 ) e. ( 0 ..^ ( # ` e ) ) -> 0 e. ( 0 ..^ ( # ` e ) ) ) | 
						
							| 94 | 91 92 93 | 3syl |  |-  ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> 0 e. ( 0 ..^ ( # ` e ) ) ) | 
						
							| 95 |  | ccatval1 |  |-  ( ( e e. Word RR /\ <" k "> e. Word RR /\ 0 e. ( 0 ..^ ( # ` e ) ) ) -> ( ( e ++ <" k "> ) ` 0 ) = ( e ` 0 ) ) | 
						
							| 96 | 87 89 94 95 | syl3anc |  |-  ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> ( ( e ++ <" k "> ) ` 0 ) = ( e ` 0 ) ) | 
						
							| 97 | 96 | neeq1d |  |-  ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> ( ( ( e ++ <" k "> ) ` 0 ) =/= 0 <-> ( e ` 0 ) =/= 0 ) ) | 
						
							| 98 | 97 | biimpa |  |-  ( ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( e ` 0 ) =/= 0 ) | 
						
							| 99 | 84 83 86 98 | syl21anc |  |-  ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> ( e ` 0 ) =/= 0 ) | 
						
							| 100 |  | simp-5r |  |-  ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) | 
						
							| 101 | 83 99 100 | mp2and |  |-  ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) | 
						
							| 102 | 62 101 80 | rspcdva |  |-  ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> ( ( T ` e ) ` m ) =/= 0 ) | 
						
							| 103 | 82 102 | eqnetrd |  |-  ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) | 
						
							| 104 | 77 103 | pm2.61dane |  |-  ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) -> ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) | 
						
							| 105 |  | simpr |  |-  ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m = ( # ` e ) ) -> m = ( # ` e ) ) | 
						
							| 106 | 105 | fveq2d |  |-  ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m = ( # ` e ) ) -> ( ( T ` ( e ++ <" k "> ) ) ` m ) = ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) ) | 
						
							| 107 |  | simpr |  |-  ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e = (/) ) -> e = (/) ) | 
						
							| 108 |  | simp-4r |  |-  ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e = (/) ) -> k e. RR ) | 
						
							| 109 |  | simplrl |  |-  ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e = (/) ) -> ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) | 
						
							| 110 | 109 | simprd |  |-  ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e = (/) ) -> ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) | 
						
							| 111 |  | oveq1 |  |-  ( e = (/) -> ( e ++ <" k "> ) = ( (/) ++ <" k "> ) ) | 
						
							| 112 |  | ccatlid |  |-  ( <" k "> e. Word RR -> ( (/) ++ <" k "> ) = <" k "> ) | 
						
							| 113 | 88 112 | syl |  |-  ( k e. RR -> ( (/) ++ <" k "> ) = <" k "> ) | 
						
							| 114 | 111 113 | sylan9eq |  |-  ( ( e = (/) /\ k e. RR ) -> ( e ++ <" k "> ) = <" k "> ) | 
						
							| 115 | 114 | fveq2d |  |-  ( ( e = (/) /\ k e. RR ) -> ( T ` ( e ++ <" k "> ) ) = ( T ` <" k "> ) ) | 
						
							| 116 | 115 | adantr |  |-  ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( T ` ( e ++ <" k "> ) ) = ( T ` <" k "> ) ) | 
						
							| 117 | 1 2 3 4 | signstf0 |  |-  ( k e. RR -> ( T ` <" k "> ) = <" ( sgn ` k ) "> ) | 
						
							| 118 | 117 | ad2antlr |  |-  ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( T ` <" k "> ) = <" ( sgn ` k ) "> ) | 
						
							| 119 | 116 118 | eqtrd |  |-  ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( T ` ( e ++ <" k "> ) ) = <" ( sgn ` k ) "> ) | 
						
							| 120 | 70 | ad2antrr |  |-  ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( # ` e ) = 0 ) | 
						
							| 121 | 119 120 | fveq12d |  |-  ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) = ( <" ( sgn ` k ) "> ` 0 ) ) | 
						
							| 122 |  | sgnclre |  |-  ( k e. RR -> ( sgn ` k ) e. RR ) | 
						
							| 123 |  | s1fv |  |-  ( ( sgn ` k ) e. RR -> ( <" ( sgn ` k ) "> ` 0 ) = ( sgn ` k ) ) | 
						
							| 124 | 122 123 | syl |  |-  ( k e. RR -> ( <" ( sgn ` k ) "> ` 0 ) = ( sgn ` k ) ) | 
						
							| 125 | 124 | ad2antlr |  |-  ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( <" ( sgn ` k ) "> ` 0 ) = ( sgn ` k ) ) | 
						
							| 126 | 121 125 | eqtrd |  |-  ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) = ( sgn ` k ) ) | 
						
							| 127 |  | simplr |  |-  ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> k e. RR ) | 
						
							| 128 | 114 | fveq1d |  |-  ( ( e = (/) /\ k e. RR ) -> ( ( e ++ <" k "> ) ` 0 ) = ( <" k "> ` 0 ) ) | 
						
							| 129 |  | s1fv |  |-  ( k e. RR -> ( <" k "> ` 0 ) = k ) | 
						
							| 130 | 129 | adantl |  |-  ( ( e = (/) /\ k e. RR ) -> ( <" k "> ` 0 ) = k ) | 
						
							| 131 | 128 130 | eqtrd |  |-  ( ( e = (/) /\ k e. RR ) -> ( ( e ++ <" k "> ) ` 0 ) = k ) | 
						
							| 132 | 131 | neeq1d |  |-  ( ( e = (/) /\ k e. RR ) -> ( ( ( e ++ <" k "> ) ` 0 ) =/= 0 <-> k =/= 0 ) ) | 
						
							| 133 | 132 | biimpa |  |-  ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> k =/= 0 ) | 
						
							| 134 |  | rexr |  |-  ( k e. RR -> k e. RR* ) | 
						
							| 135 |  | sgn0bi |  |-  ( k e. RR* -> ( ( sgn ` k ) = 0 <-> k = 0 ) ) | 
						
							| 136 | 134 135 | syl |  |-  ( k e. RR -> ( ( sgn ` k ) = 0 <-> k = 0 ) ) | 
						
							| 137 | 136 | necon3bid |  |-  ( k e. RR -> ( ( sgn ` k ) =/= 0 <-> k =/= 0 ) ) | 
						
							| 138 | 137 | biimpar |  |-  ( ( k e. RR /\ k =/= 0 ) -> ( sgn ` k ) =/= 0 ) | 
						
							| 139 | 127 133 138 | syl2anc |  |-  ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( sgn ` k ) =/= 0 ) | 
						
							| 140 | 126 139 | eqnetrd |  |-  ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) =/= 0 ) | 
						
							| 141 | 107 108 110 140 | syl21anc |  |-  ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e = (/) ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) =/= 0 ) | 
						
							| 142 |  | eldifsn |  |-  ( e e. ( Word RR \ { (/) } ) <-> ( e e. Word RR /\ e =/= (/) ) ) | 
						
							| 143 | 142 | biimpri |  |-  ( ( e e. Word RR /\ e =/= (/) ) -> e e. ( Word RR \ { (/) } ) ) | 
						
							| 144 | 143 | adantlr |  |-  ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> e e. ( Word RR \ { (/) } ) ) | 
						
							| 145 |  | simplr |  |-  ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> k e. RR ) | 
						
							| 146 | 1 2 3 4 | signstfvn |  |-  ( ( e e. ( Word RR \ { (/) } ) /\ k e. RR ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) = ( ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) .+^ ( sgn ` k ) ) ) | 
						
							| 147 | 144 145 146 | syl2anc |  |-  ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) = ( ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) .+^ ( sgn ` k ) ) ) | 
						
							| 148 | 147 | ad4ant14 |  |-  ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) = ( ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) .+^ ( sgn ` k ) ) ) | 
						
							| 149 | 90 92 | syl |  |-  ( ( e e. Word RR /\ e =/= (/) ) -> ( ( # ` e ) - 1 ) e. ( 0 ..^ ( # ` e ) ) ) | 
						
							| 150 | 1 2 3 4 | signstcl |  |-  ( ( e e. Word RR /\ ( ( # ` e ) - 1 ) e. ( 0 ..^ ( # ` e ) ) ) -> ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) e. { -u 1 , 0 , 1 } ) | 
						
							| 151 | 149 150 | syldan |  |-  ( ( e e. Word RR /\ e =/= (/) ) -> ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) e. { -u 1 , 0 , 1 } ) | 
						
							| 152 | 151 | ad5ant15 |  |-  ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) e. { -u 1 , 0 , 1 } ) | 
						
							| 153 |  | sgncl |  |-  ( k e. RR* -> ( sgn ` k ) e. { -u 1 , 0 , 1 } ) | 
						
							| 154 | 134 153 | syl |  |-  ( k e. RR -> ( sgn ` k ) e. { -u 1 , 0 , 1 } ) | 
						
							| 155 | 154 | ad4antlr |  |-  ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( sgn ` k ) e. { -u 1 , 0 , 1 } ) | 
						
							| 156 |  | fveq2 |  |-  ( n = ( ( # ` e ) - 1 ) -> ( ( T ` e ) ` n ) = ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) ) | 
						
							| 157 | 156 | neeq1d |  |-  ( n = ( ( # ` e ) - 1 ) -> ( ( ( T ` e ) ` n ) =/= 0 <-> ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) =/= 0 ) ) | 
						
							| 158 |  | simpr |  |-  ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> e =/= (/) ) | 
						
							| 159 |  | simplll |  |-  ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( e e. Word RR /\ k e. RR ) ) | 
						
							| 160 |  | simplrl |  |-  ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) | 
						
							| 161 | 160 | simprd |  |-  ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) | 
						
							| 162 | 159 158 161 98 | syl21anc |  |-  ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( e ` 0 ) =/= 0 ) | 
						
							| 163 |  | simpllr |  |-  ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) | 
						
							| 164 | 158 162 163 | mp2and |  |-  ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) | 
						
							| 165 | 90 | ad4ant14 |  |-  ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( # ` e ) e. NN ) | 
						
							| 166 | 165 92 | syl |  |-  ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( # ` e ) - 1 ) e. ( 0 ..^ ( # ` e ) ) ) | 
						
							| 167 | 166 | adantllr |  |-  ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( # ` e ) - 1 ) e. ( 0 ..^ ( # ` e ) ) ) | 
						
							| 168 | 157 164 167 | rspcdva |  |-  ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) =/= 0 ) | 
						
							| 169 | 1 2 | signswn0 |  |-  ( ( ( ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) e. { -u 1 , 0 , 1 } /\ ( sgn ` k ) e. { -u 1 , 0 , 1 } ) /\ ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) =/= 0 ) -> ( ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) .+^ ( sgn ` k ) ) =/= 0 ) | 
						
							| 170 | 152 155 168 169 | syl21anc |  |-  ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) .+^ ( sgn ` k ) ) =/= 0 ) | 
						
							| 171 | 148 170 | eqnetrd |  |-  ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) =/= 0 ) | 
						
							| 172 | 141 171 | pm2.61dane |  |-  ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) =/= 0 ) | 
						
							| 173 | 172 | anassrs |  |-  ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) =/= 0 ) | 
						
							| 174 | 173 | adantr |  |-  ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m = ( # ` e ) ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) =/= 0 ) | 
						
							| 175 | 106 174 | eqnetrd |  |-  ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m = ( # ` e ) ) -> ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) | 
						
							| 176 |  | lencl |  |-  ( e e. Word RR -> ( # ` e ) e. NN0 ) | 
						
							| 177 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 178 | 176 177 | eleqtrdi |  |-  ( e e. Word RR -> ( # ` e ) e. ( ZZ>= ` 0 ) ) | 
						
							| 179 | 178 | ad4antr |  |-  ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) -> ( # ` e ) e. ( ZZ>= ` 0 ) ) | 
						
							| 180 |  | ccatws1len |  |-  ( e e. Word RR -> ( # ` ( e ++ <" k "> ) ) = ( ( # ` e ) + 1 ) ) | 
						
							| 181 | 180 | adantr |  |-  ( ( e e. Word RR /\ k e. RR ) -> ( # ` ( e ++ <" k "> ) ) = ( ( # ` e ) + 1 ) ) | 
						
							| 182 | 181 | oveq2d |  |-  ( ( e e. Word RR /\ k e. RR ) -> ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) = ( 0 ..^ ( ( # ` e ) + 1 ) ) ) | 
						
							| 183 | 182 | eleq2d |  |-  ( ( e e. Word RR /\ k e. RR ) -> ( m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) <-> m e. ( 0 ..^ ( ( # ` e ) + 1 ) ) ) ) | 
						
							| 184 | 183 | biimpa |  |-  ( ( ( e e. Word RR /\ k e. RR ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) -> m e. ( 0 ..^ ( ( # ` e ) + 1 ) ) ) | 
						
							| 185 | 184 | ad4ant14 |  |-  ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) -> m e. ( 0 ..^ ( ( # ` e ) + 1 ) ) ) | 
						
							| 186 |  | fzosplitsni |  |-  ( ( # ` e ) e. ( ZZ>= ` 0 ) -> ( m e. ( 0 ..^ ( ( # ` e ) + 1 ) ) <-> ( m e. ( 0 ..^ ( # ` e ) ) \/ m = ( # ` e ) ) ) ) | 
						
							| 187 | 186 | biimpa |  |-  ( ( ( # ` e ) e. ( ZZ>= ` 0 ) /\ m e. ( 0 ..^ ( ( # ` e ) + 1 ) ) ) -> ( m e. ( 0 ..^ ( # ` e ) ) \/ m = ( # ` e ) ) ) | 
						
							| 188 | 179 185 187 | syl2anc |  |-  ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) -> ( m e. ( 0 ..^ ( # ` e ) ) \/ m = ( # ` e ) ) ) | 
						
							| 189 | 104 175 188 | mpjaodan |  |-  ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) -> ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) | 
						
							| 190 | 189 | ralrimiva |  |-  ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) -> A. m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) | 
						
							| 191 | 65 190 | sylanbr |  |-  ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` m ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) -> A. m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) | 
						
							| 192 | 191 | exp31 |  |-  ( ( e e. Word RR /\ k e. RR ) -> ( ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` m ) =/= 0 ) -> ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) ) ) | 
						
							| 193 | 24 35 46 57 60 192 | wrdind |  |-  ( F e. Word RR -> ( ( F =/= (/) /\ ( F ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` F ) ) ( ( T ` F ) ` m ) =/= 0 ) ) | 
						
							| 194 | 193 | imp |  |-  ( ( F e. Word RR /\ ( F =/= (/) /\ ( F ` 0 ) =/= 0 ) ) -> A. m e. ( 0 ..^ ( # ` F ) ) ( ( T ` F ) ` m ) =/= 0 ) | 
						
							| 195 | 194 | adantr |  |-  ( ( ( F e. Word RR /\ ( F =/= (/) /\ ( F ` 0 ) =/= 0 ) ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> A. m e. ( 0 ..^ ( # ` F ) ) ( ( T ` F ) ` m ) =/= 0 ) | 
						
							| 196 |  | simpr |  |-  ( ( ( F e. Word RR /\ ( F =/= (/) /\ ( F ` 0 ) =/= 0 ) ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> N e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 197 | 13 195 196 | rspcdva |  |-  ( ( ( F e. Word RR /\ ( F =/= (/) /\ ( F ` 0 ) =/= 0 ) ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` F ) ` N ) =/= 0 ) | 
						
							| 198 | 6 10 11 197 | syl21anc |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` F ) ` N ) =/= 0 ) |