| Step |
Hyp |
Ref |
Expression |
| 1 |
|
signsv.p |
|- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) |
| 2 |
|
signsv.w |
|- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } |
| 3 |
|
signsv.t |
|- T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) |
| 4 |
|
signsv.v |
|- V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) |
| 5 |
|
simpll |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> F e. ( Word RR \ { (/) } ) ) |
| 6 |
5
|
eldifad |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> F e. Word RR ) |
| 7 |
|
eldifsni |
|- ( F e. ( Word RR \ { (/) } ) -> F =/= (/) ) |
| 8 |
7
|
ad2antrr |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> F =/= (/) ) |
| 9 |
|
simplr |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` 0 ) =/= 0 ) |
| 10 |
8 9
|
jca |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( F =/= (/) /\ ( F ` 0 ) =/= 0 ) ) |
| 11 |
|
simpr |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> N e. ( 0 ..^ ( # ` F ) ) ) |
| 12 |
|
fveq2 |
|- ( m = N -> ( ( T ` F ) ` m ) = ( ( T ` F ) ` N ) ) |
| 13 |
12
|
neeq1d |
|- ( m = N -> ( ( ( T ` F ) ` m ) =/= 0 <-> ( ( T ` F ) ` N ) =/= 0 ) ) |
| 14 |
|
neeq1 |
|- ( g = (/) -> ( g =/= (/) <-> (/) =/= (/) ) ) |
| 15 |
|
fveq1 |
|- ( g = (/) -> ( g ` 0 ) = ( (/) ` 0 ) ) |
| 16 |
15
|
neeq1d |
|- ( g = (/) -> ( ( g ` 0 ) =/= 0 <-> ( (/) ` 0 ) =/= 0 ) ) |
| 17 |
14 16
|
anbi12d |
|- ( g = (/) -> ( ( g =/= (/) /\ ( g ` 0 ) =/= 0 ) <-> ( (/) =/= (/) /\ ( (/) ` 0 ) =/= 0 ) ) ) |
| 18 |
|
fveq2 |
|- ( g = (/) -> ( # ` g ) = ( # ` (/) ) ) |
| 19 |
18
|
oveq2d |
|- ( g = (/) -> ( 0 ..^ ( # ` g ) ) = ( 0 ..^ ( # ` (/) ) ) ) |
| 20 |
|
fveq2 |
|- ( g = (/) -> ( T ` g ) = ( T ` (/) ) ) |
| 21 |
20
|
fveq1d |
|- ( g = (/) -> ( ( T ` g ) ` m ) = ( ( T ` (/) ) ` m ) ) |
| 22 |
21
|
neeq1d |
|- ( g = (/) -> ( ( ( T ` g ) ` m ) =/= 0 <-> ( ( T ` (/) ) ` m ) =/= 0 ) ) |
| 23 |
19 22
|
raleqbidv |
|- ( g = (/) -> ( A. m e. ( 0 ..^ ( # ` g ) ) ( ( T ` g ) ` m ) =/= 0 <-> A. m e. ( 0 ..^ ( # ` (/) ) ) ( ( T ` (/) ) ` m ) =/= 0 ) ) |
| 24 |
17 23
|
imbi12d |
|- ( g = (/) -> ( ( ( g =/= (/) /\ ( g ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` g ) ) ( ( T ` g ) ` m ) =/= 0 ) <-> ( ( (/) =/= (/) /\ ( (/) ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` (/) ) ) ( ( T ` (/) ) ` m ) =/= 0 ) ) ) |
| 25 |
|
neeq1 |
|- ( g = e -> ( g =/= (/) <-> e =/= (/) ) ) |
| 26 |
|
fveq1 |
|- ( g = e -> ( g ` 0 ) = ( e ` 0 ) ) |
| 27 |
26
|
neeq1d |
|- ( g = e -> ( ( g ` 0 ) =/= 0 <-> ( e ` 0 ) =/= 0 ) ) |
| 28 |
25 27
|
anbi12d |
|- ( g = e -> ( ( g =/= (/) /\ ( g ` 0 ) =/= 0 ) <-> ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) ) ) |
| 29 |
|
fveq2 |
|- ( g = e -> ( # ` g ) = ( # ` e ) ) |
| 30 |
29
|
oveq2d |
|- ( g = e -> ( 0 ..^ ( # ` g ) ) = ( 0 ..^ ( # ` e ) ) ) |
| 31 |
|
fveq2 |
|- ( g = e -> ( T ` g ) = ( T ` e ) ) |
| 32 |
31
|
fveq1d |
|- ( g = e -> ( ( T ` g ) ` m ) = ( ( T ` e ) ` m ) ) |
| 33 |
32
|
neeq1d |
|- ( g = e -> ( ( ( T ` g ) ` m ) =/= 0 <-> ( ( T ` e ) ` m ) =/= 0 ) ) |
| 34 |
30 33
|
raleqbidv |
|- ( g = e -> ( A. m e. ( 0 ..^ ( # ` g ) ) ( ( T ` g ) ` m ) =/= 0 <-> A. m e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` m ) =/= 0 ) ) |
| 35 |
28 34
|
imbi12d |
|- ( g = e -> ( ( ( g =/= (/) /\ ( g ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` g ) ) ( ( T ` g ) ` m ) =/= 0 ) <-> ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` m ) =/= 0 ) ) ) |
| 36 |
|
neeq1 |
|- ( g = ( e ++ <" k "> ) -> ( g =/= (/) <-> ( e ++ <" k "> ) =/= (/) ) ) |
| 37 |
|
fveq1 |
|- ( g = ( e ++ <" k "> ) -> ( g ` 0 ) = ( ( e ++ <" k "> ) ` 0 ) ) |
| 38 |
37
|
neeq1d |
|- ( g = ( e ++ <" k "> ) -> ( ( g ` 0 ) =/= 0 <-> ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) |
| 39 |
36 38
|
anbi12d |
|- ( g = ( e ++ <" k "> ) -> ( ( g =/= (/) /\ ( g ` 0 ) =/= 0 ) <-> ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) ) |
| 40 |
|
fveq2 |
|- ( g = ( e ++ <" k "> ) -> ( # ` g ) = ( # ` ( e ++ <" k "> ) ) ) |
| 41 |
40
|
oveq2d |
|- ( g = ( e ++ <" k "> ) -> ( 0 ..^ ( # ` g ) ) = ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) |
| 42 |
|
fveq2 |
|- ( g = ( e ++ <" k "> ) -> ( T ` g ) = ( T ` ( e ++ <" k "> ) ) ) |
| 43 |
42
|
fveq1d |
|- ( g = ( e ++ <" k "> ) -> ( ( T ` g ) ` m ) = ( ( T ` ( e ++ <" k "> ) ) ` m ) ) |
| 44 |
43
|
neeq1d |
|- ( g = ( e ++ <" k "> ) -> ( ( ( T ` g ) ` m ) =/= 0 <-> ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) ) |
| 45 |
41 44
|
raleqbidv |
|- ( g = ( e ++ <" k "> ) -> ( A. m e. ( 0 ..^ ( # ` g ) ) ( ( T ` g ) ` m ) =/= 0 <-> A. m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) ) |
| 46 |
39 45
|
imbi12d |
|- ( g = ( e ++ <" k "> ) -> ( ( ( g =/= (/) /\ ( g ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` g ) ) ( ( T ` g ) ` m ) =/= 0 ) <-> ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) ) ) |
| 47 |
|
neeq1 |
|- ( g = F -> ( g =/= (/) <-> F =/= (/) ) ) |
| 48 |
|
fveq1 |
|- ( g = F -> ( g ` 0 ) = ( F ` 0 ) ) |
| 49 |
48
|
neeq1d |
|- ( g = F -> ( ( g ` 0 ) =/= 0 <-> ( F ` 0 ) =/= 0 ) ) |
| 50 |
47 49
|
anbi12d |
|- ( g = F -> ( ( g =/= (/) /\ ( g ` 0 ) =/= 0 ) <-> ( F =/= (/) /\ ( F ` 0 ) =/= 0 ) ) ) |
| 51 |
|
fveq2 |
|- ( g = F -> ( # ` g ) = ( # ` F ) ) |
| 52 |
51
|
oveq2d |
|- ( g = F -> ( 0 ..^ ( # ` g ) ) = ( 0 ..^ ( # ` F ) ) ) |
| 53 |
|
fveq2 |
|- ( g = F -> ( T ` g ) = ( T ` F ) ) |
| 54 |
53
|
fveq1d |
|- ( g = F -> ( ( T ` g ) ` m ) = ( ( T ` F ) ` m ) ) |
| 55 |
54
|
neeq1d |
|- ( g = F -> ( ( ( T ` g ) ` m ) =/= 0 <-> ( ( T ` F ) ` m ) =/= 0 ) ) |
| 56 |
52 55
|
raleqbidv |
|- ( g = F -> ( A. m e. ( 0 ..^ ( # ` g ) ) ( ( T ` g ) ` m ) =/= 0 <-> A. m e. ( 0 ..^ ( # ` F ) ) ( ( T ` F ) ` m ) =/= 0 ) ) |
| 57 |
50 56
|
imbi12d |
|- ( g = F -> ( ( ( g =/= (/) /\ ( g ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` g ) ) ( ( T ` g ) ` m ) =/= 0 ) <-> ( ( F =/= (/) /\ ( F ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` F ) ) ( ( T ` F ) ` m ) =/= 0 ) ) ) |
| 58 |
|
neirr |
|- -. (/) =/= (/) |
| 59 |
58
|
intnanr |
|- -. ( (/) =/= (/) /\ ( (/) ` 0 ) =/= 0 ) |
| 60 |
59
|
pm2.21i |
|- ( ( (/) =/= (/) /\ ( (/) ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` (/) ) ) ( ( T ` (/) ) ` m ) =/= 0 ) |
| 61 |
|
fveq2 |
|- ( n = m -> ( ( T ` e ) ` n ) = ( ( T ` e ) ` m ) ) |
| 62 |
61
|
neeq1d |
|- ( n = m -> ( ( ( T ` e ) ` n ) =/= 0 <-> ( ( T ` e ) ` m ) =/= 0 ) ) |
| 63 |
62
|
cbvralvw |
|- ( A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 <-> A. m e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` m ) =/= 0 ) |
| 64 |
63
|
imbi2i |
|- ( ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) <-> ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` m ) =/= 0 ) ) |
| 65 |
64
|
anbi2i |
|- ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) <-> ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` m ) =/= 0 ) ) ) |
| 66 |
|
simplr |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e = (/) ) -> m e. ( 0 ..^ ( # ` e ) ) ) |
| 67 |
|
noel |
|- -. m e. (/) |
| 68 |
|
fveq2 |
|- ( e = (/) -> ( # ` e ) = ( # ` (/) ) ) |
| 69 |
|
hash0 |
|- ( # ` (/) ) = 0 |
| 70 |
68 69
|
eqtrdi |
|- ( e = (/) -> ( # ` e ) = 0 ) |
| 71 |
70
|
oveq2d |
|- ( e = (/) -> ( 0 ..^ ( # ` e ) ) = ( 0 ..^ 0 ) ) |
| 72 |
|
fzo0 |
|- ( 0 ..^ 0 ) = (/) |
| 73 |
71 72
|
eqtrdi |
|- ( e = (/) -> ( 0 ..^ ( # ` e ) ) = (/) ) |
| 74 |
73
|
eleq2d |
|- ( e = (/) -> ( m e. ( 0 ..^ ( # ` e ) ) <-> m e. (/) ) ) |
| 75 |
67 74
|
mtbiri |
|- ( e = (/) -> -. m e. ( 0 ..^ ( # ` e ) ) ) |
| 76 |
75
|
adantl |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e = (/) ) -> -. m e. ( 0 ..^ ( # ` e ) ) ) |
| 77 |
66 76
|
pm2.21dd |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e = (/) ) -> ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) |
| 78 |
|
simp-6l |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> e e. Word RR ) |
| 79 |
|
simp-6r |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> k e. RR ) |
| 80 |
|
simplr |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> m e. ( 0 ..^ ( # ` e ) ) ) |
| 81 |
1 2 3 4
|
signstfvp |
|- ( ( e e. Word RR /\ k e. RR /\ m e. ( 0 ..^ ( # ` e ) ) ) -> ( ( T ` ( e ++ <" k "> ) ) ` m ) = ( ( T ` e ) ` m ) ) |
| 82 |
78 79 80 81
|
syl3anc |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> ( ( T ` ( e ++ <" k "> ) ) ` m ) = ( ( T ` e ) ` m ) ) |
| 83 |
|
simpr |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> e =/= (/) ) |
| 84 |
|
simp-5l |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> ( e e. Word RR /\ k e. RR ) ) |
| 85 |
|
simplrr |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ ( m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) /\ e =/= (/) ) ) -> ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) |
| 86 |
85
|
3anassrs |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) |
| 87 |
|
simpll |
|- ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> e e. Word RR ) |
| 88 |
|
s1cl |
|- ( k e. RR -> <" k "> e. Word RR ) |
| 89 |
88
|
ad2antlr |
|- ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> <" k "> e. Word RR ) |
| 90 |
|
lennncl |
|- ( ( e e. Word RR /\ e =/= (/) ) -> ( # ` e ) e. NN ) |
| 91 |
90
|
adantlr |
|- ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> ( # ` e ) e. NN ) |
| 92 |
|
fzo0end |
|- ( ( # ` e ) e. NN -> ( ( # ` e ) - 1 ) e. ( 0 ..^ ( # ` e ) ) ) |
| 93 |
|
elfzolt3b |
|- ( ( ( # ` e ) - 1 ) e. ( 0 ..^ ( # ` e ) ) -> 0 e. ( 0 ..^ ( # ` e ) ) ) |
| 94 |
91 92 93
|
3syl |
|- ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> 0 e. ( 0 ..^ ( # ` e ) ) ) |
| 95 |
|
ccatval1 |
|- ( ( e e. Word RR /\ <" k "> e. Word RR /\ 0 e. ( 0 ..^ ( # ` e ) ) ) -> ( ( e ++ <" k "> ) ` 0 ) = ( e ` 0 ) ) |
| 96 |
87 89 94 95
|
syl3anc |
|- ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> ( ( e ++ <" k "> ) ` 0 ) = ( e ` 0 ) ) |
| 97 |
96
|
neeq1d |
|- ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> ( ( ( e ++ <" k "> ) ` 0 ) =/= 0 <-> ( e ` 0 ) =/= 0 ) ) |
| 98 |
97
|
biimpa |
|- ( ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( e ` 0 ) =/= 0 ) |
| 99 |
84 83 86 98
|
syl21anc |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> ( e ` 0 ) =/= 0 ) |
| 100 |
|
simp-5r |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) |
| 101 |
83 99 100
|
mp2and |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) |
| 102 |
62 101 80
|
rspcdva |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> ( ( T ` e ) ` m ) =/= 0 ) |
| 103 |
82 102
|
eqnetrd |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) |
| 104 |
77 103
|
pm2.61dane |
|- ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) -> ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) |
| 105 |
|
simpr |
|- ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m = ( # ` e ) ) -> m = ( # ` e ) ) |
| 106 |
105
|
fveq2d |
|- ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m = ( # ` e ) ) -> ( ( T ` ( e ++ <" k "> ) ) ` m ) = ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) ) |
| 107 |
|
simpr |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e = (/) ) -> e = (/) ) |
| 108 |
|
simp-4r |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e = (/) ) -> k e. RR ) |
| 109 |
|
simplrl |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e = (/) ) -> ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) |
| 110 |
109
|
simprd |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e = (/) ) -> ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) |
| 111 |
|
oveq1 |
|- ( e = (/) -> ( e ++ <" k "> ) = ( (/) ++ <" k "> ) ) |
| 112 |
|
ccatlid |
|- ( <" k "> e. Word RR -> ( (/) ++ <" k "> ) = <" k "> ) |
| 113 |
88 112
|
syl |
|- ( k e. RR -> ( (/) ++ <" k "> ) = <" k "> ) |
| 114 |
111 113
|
sylan9eq |
|- ( ( e = (/) /\ k e. RR ) -> ( e ++ <" k "> ) = <" k "> ) |
| 115 |
114
|
fveq2d |
|- ( ( e = (/) /\ k e. RR ) -> ( T ` ( e ++ <" k "> ) ) = ( T ` <" k "> ) ) |
| 116 |
115
|
adantr |
|- ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( T ` ( e ++ <" k "> ) ) = ( T ` <" k "> ) ) |
| 117 |
1 2 3 4
|
signstf0 |
|- ( k e. RR -> ( T ` <" k "> ) = <" ( sgn ` k ) "> ) |
| 118 |
117
|
ad2antlr |
|- ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( T ` <" k "> ) = <" ( sgn ` k ) "> ) |
| 119 |
116 118
|
eqtrd |
|- ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( T ` ( e ++ <" k "> ) ) = <" ( sgn ` k ) "> ) |
| 120 |
70
|
ad2antrr |
|- ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( # ` e ) = 0 ) |
| 121 |
119 120
|
fveq12d |
|- ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) = ( <" ( sgn ` k ) "> ` 0 ) ) |
| 122 |
|
sgnclre |
|- ( k e. RR -> ( sgn ` k ) e. RR ) |
| 123 |
|
s1fv |
|- ( ( sgn ` k ) e. RR -> ( <" ( sgn ` k ) "> ` 0 ) = ( sgn ` k ) ) |
| 124 |
122 123
|
syl |
|- ( k e. RR -> ( <" ( sgn ` k ) "> ` 0 ) = ( sgn ` k ) ) |
| 125 |
124
|
ad2antlr |
|- ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( <" ( sgn ` k ) "> ` 0 ) = ( sgn ` k ) ) |
| 126 |
121 125
|
eqtrd |
|- ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) = ( sgn ` k ) ) |
| 127 |
|
simplr |
|- ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> k e. RR ) |
| 128 |
114
|
fveq1d |
|- ( ( e = (/) /\ k e. RR ) -> ( ( e ++ <" k "> ) ` 0 ) = ( <" k "> ` 0 ) ) |
| 129 |
|
s1fv |
|- ( k e. RR -> ( <" k "> ` 0 ) = k ) |
| 130 |
129
|
adantl |
|- ( ( e = (/) /\ k e. RR ) -> ( <" k "> ` 0 ) = k ) |
| 131 |
128 130
|
eqtrd |
|- ( ( e = (/) /\ k e. RR ) -> ( ( e ++ <" k "> ) ` 0 ) = k ) |
| 132 |
131
|
neeq1d |
|- ( ( e = (/) /\ k e. RR ) -> ( ( ( e ++ <" k "> ) ` 0 ) =/= 0 <-> k =/= 0 ) ) |
| 133 |
132
|
biimpa |
|- ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> k =/= 0 ) |
| 134 |
|
rexr |
|- ( k e. RR -> k e. RR* ) |
| 135 |
|
sgn0bi |
|- ( k e. RR* -> ( ( sgn ` k ) = 0 <-> k = 0 ) ) |
| 136 |
134 135
|
syl |
|- ( k e. RR -> ( ( sgn ` k ) = 0 <-> k = 0 ) ) |
| 137 |
136
|
necon3bid |
|- ( k e. RR -> ( ( sgn ` k ) =/= 0 <-> k =/= 0 ) ) |
| 138 |
137
|
biimpar |
|- ( ( k e. RR /\ k =/= 0 ) -> ( sgn ` k ) =/= 0 ) |
| 139 |
127 133 138
|
syl2anc |
|- ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( sgn ` k ) =/= 0 ) |
| 140 |
126 139
|
eqnetrd |
|- ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) =/= 0 ) |
| 141 |
107 108 110 140
|
syl21anc |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e = (/) ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) =/= 0 ) |
| 142 |
|
eldifsn |
|- ( e e. ( Word RR \ { (/) } ) <-> ( e e. Word RR /\ e =/= (/) ) ) |
| 143 |
142
|
biimpri |
|- ( ( e e. Word RR /\ e =/= (/) ) -> e e. ( Word RR \ { (/) } ) ) |
| 144 |
143
|
adantlr |
|- ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> e e. ( Word RR \ { (/) } ) ) |
| 145 |
|
simplr |
|- ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> k e. RR ) |
| 146 |
1 2 3 4
|
signstfvn |
|- ( ( e e. ( Word RR \ { (/) } ) /\ k e. RR ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) = ( ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) .+^ ( sgn ` k ) ) ) |
| 147 |
144 145 146
|
syl2anc |
|- ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) = ( ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) .+^ ( sgn ` k ) ) ) |
| 148 |
147
|
ad4ant14 |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) = ( ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) .+^ ( sgn ` k ) ) ) |
| 149 |
90 92
|
syl |
|- ( ( e e. Word RR /\ e =/= (/) ) -> ( ( # ` e ) - 1 ) e. ( 0 ..^ ( # ` e ) ) ) |
| 150 |
1 2 3 4
|
signstcl |
|- ( ( e e. Word RR /\ ( ( # ` e ) - 1 ) e. ( 0 ..^ ( # ` e ) ) ) -> ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) e. { -u 1 , 0 , 1 } ) |
| 151 |
149 150
|
syldan |
|- ( ( e e. Word RR /\ e =/= (/) ) -> ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) e. { -u 1 , 0 , 1 } ) |
| 152 |
151
|
ad5ant15 |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) e. { -u 1 , 0 , 1 } ) |
| 153 |
|
sgncl |
|- ( k e. RR* -> ( sgn ` k ) e. { -u 1 , 0 , 1 } ) |
| 154 |
134 153
|
syl |
|- ( k e. RR -> ( sgn ` k ) e. { -u 1 , 0 , 1 } ) |
| 155 |
154
|
ad4antlr |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( sgn ` k ) e. { -u 1 , 0 , 1 } ) |
| 156 |
|
fveq2 |
|- ( n = ( ( # ` e ) - 1 ) -> ( ( T ` e ) ` n ) = ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) ) |
| 157 |
156
|
neeq1d |
|- ( n = ( ( # ` e ) - 1 ) -> ( ( ( T ` e ) ` n ) =/= 0 <-> ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) =/= 0 ) ) |
| 158 |
|
simpr |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> e =/= (/) ) |
| 159 |
|
simplll |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( e e. Word RR /\ k e. RR ) ) |
| 160 |
|
simplrl |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) |
| 161 |
160
|
simprd |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) |
| 162 |
159 158 161 98
|
syl21anc |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( e ` 0 ) =/= 0 ) |
| 163 |
|
simpllr |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) |
| 164 |
158 162 163
|
mp2and |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) |
| 165 |
90
|
ad4ant14 |
|- ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( # ` e ) e. NN ) |
| 166 |
165 92
|
syl |
|- ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( # ` e ) - 1 ) e. ( 0 ..^ ( # ` e ) ) ) |
| 167 |
166
|
adantllr |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( # ` e ) - 1 ) e. ( 0 ..^ ( # ` e ) ) ) |
| 168 |
157 164 167
|
rspcdva |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) =/= 0 ) |
| 169 |
1 2
|
signswn0 |
|- ( ( ( ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) e. { -u 1 , 0 , 1 } /\ ( sgn ` k ) e. { -u 1 , 0 , 1 } ) /\ ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) =/= 0 ) -> ( ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) .+^ ( sgn ` k ) ) =/= 0 ) |
| 170 |
152 155 168 169
|
syl21anc |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) .+^ ( sgn ` k ) ) =/= 0 ) |
| 171 |
148 170
|
eqnetrd |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) =/= 0 ) |
| 172 |
141 171
|
pm2.61dane |
|- ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) =/= 0 ) |
| 173 |
172
|
anassrs |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) =/= 0 ) |
| 174 |
173
|
adantr |
|- ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m = ( # ` e ) ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) =/= 0 ) |
| 175 |
106 174
|
eqnetrd |
|- ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m = ( # ` e ) ) -> ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) |
| 176 |
|
lencl |
|- ( e e. Word RR -> ( # ` e ) e. NN0 ) |
| 177 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 178 |
176 177
|
eleqtrdi |
|- ( e e. Word RR -> ( # ` e ) e. ( ZZ>= ` 0 ) ) |
| 179 |
178
|
ad4antr |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) -> ( # ` e ) e. ( ZZ>= ` 0 ) ) |
| 180 |
|
ccatws1len |
|- ( e e. Word RR -> ( # ` ( e ++ <" k "> ) ) = ( ( # ` e ) + 1 ) ) |
| 181 |
180
|
adantr |
|- ( ( e e. Word RR /\ k e. RR ) -> ( # ` ( e ++ <" k "> ) ) = ( ( # ` e ) + 1 ) ) |
| 182 |
181
|
oveq2d |
|- ( ( e e. Word RR /\ k e. RR ) -> ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) = ( 0 ..^ ( ( # ` e ) + 1 ) ) ) |
| 183 |
182
|
eleq2d |
|- ( ( e e. Word RR /\ k e. RR ) -> ( m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) <-> m e. ( 0 ..^ ( ( # ` e ) + 1 ) ) ) ) |
| 184 |
183
|
biimpa |
|- ( ( ( e e. Word RR /\ k e. RR ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) -> m e. ( 0 ..^ ( ( # ` e ) + 1 ) ) ) |
| 185 |
184
|
ad4ant14 |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) -> m e. ( 0 ..^ ( ( # ` e ) + 1 ) ) ) |
| 186 |
|
fzosplitsni |
|- ( ( # ` e ) e. ( ZZ>= ` 0 ) -> ( m e. ( 0 ..^ ( ( # ` e ) + 1 ) ) <-> ( m e. ( 0 ..^ ( # ` e ) ) \/ m = ( # ` e ) ) ) ) |
| 187 |
186
|
biimpa |
|- ( ( ( # ` e ) e. ( ZZ>= ` 0 ) /\ m e. ( 0 ..^ ( ( # ` e ) + 1 ) ) ) -> ( m e. ( 0 ..^ ( # ` e ) ) \/ m = ( # ` e ) ) ) |
| 188 |
179 185 187
|
syl2anc |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) -> ( m e. ( 0 ..^ ( # ` e ) ) \/ m = ( # ` e ) ) ) |
| 189 |
104 175 188
|
mpjaodan |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) -> ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) |
| 190 |
189
|
ralrimiva |
|- ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) -> A. m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) |
| 191 |
65 190
|
sylanbr |
|- ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` m ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) -> A. m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) |
| 192 |
191
|
exp31 |
|- ( ( e e. Word RR /\ k e. RR ) -> ( ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` m ) =/= 0 ) -> ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) ) ) |
| 193 |
24 35 46 57 60 192
|
wrdind |
|- ( F e. Word RR -> ( ( F =/= (/) /\ ( F ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` F ) ) ( ( T ` F ) ` m ) =/= 0 ) ) |
| 194 |
193
|
imp |
|- ( ( F e. Word RR /\ ( F =/= (/) /\ ( F ` 0 ) =/= 0 ) ) -> A. m e. ( 0 ..^ ( # ` F ) ) ( ( T ` F ) ` m ) =/= 0 ) |
| 195 |
194
|
adantr |
|- ( ( ( F e. Word RR /\ ( F =/= (/) /\ ( F ` 0 ) =/= 0 ) ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> A. m e. ( 0 ..^ ( # ` F ) ) ( ( T ` F ) ` m ) =/= 0 ) |
| 196 |
|
simpr |
|- ( ( ( F e. Word RR /\ ( F =/= (/) /\ ( F ` 0 ) =/= 0 ) ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> N e. ( 0 ..^ ( # ` F ) ) ) |
| 197 |
13 195 196
|
rspcdva |
|- ( ( ( F e. Word RR /\ ( F =/= (/) /\ ( F ` 0 ) =/= 0 ) ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` F ) ` N ) =/= 0 ) |
| 198 |
6 10 11 197
|
syl21anc |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` F ) ` N ) =/= 0 ) |