Step |
Hyp |
Ref |
Expression |
1 |
|
signsv.p |
|- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) |
2 |
|
signsv.w |
|- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } |
3 |
|
signsv.t |
|- T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) |
4 |
|
signsv.v |
|- V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) |
5 |
|
simpll |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> F e. ( Word RR \ { (/) } ) ) |
6 |
5
|
eldifad |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> F e. Word RR ) |
7 |
|
eldifsni |
|- ( F e. ( Word RR \ { (/) } ) -> F =/= (/) ) |
8 |
7
|
ad2antrr |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> F =/= (/) ) |
9 |
|
simplr |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` 0 ) =/= 0 ) |
10 |
8 9
|
jca |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( F =/= (/) /\ ( F ` 0 ) =/= 0 ) ) |
11 |
|
simpr |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> N e. ( 0 ..^ ( # ` F ) ) ) |
12 |
|
fveq2 |
|- ( m = N -> ( ( T ` F ) ` m ) = ( ( T ` F ) ` N ) ) |
13 |
12
|
neeq1d |
|- ( m = N -> ( ( ( T ` F ) ` m ) =/= 0 <-> ( ( T ` F ) ` N ) =/= 0 ) ) |
14 |
|
neeq1 |
|- ( g = (/) -> ( g =/= (/) <-> (/) =/= (/) ) ) |
15 |
|
fveq1 |
|- ( g = (/) -> ( g ` 0 ) = ( (/) ` 0 ) ) |
16 |
15
|
neeq1d |
|- ( g = (/) -> ( ( g ` 0 ) =/= 0 <-> ( (/) ` 0 ) =/= 0 ) ) |
17 |
14 16
|
anbi12d |
|- ( g = (/) -> ( ( g =/= (/) /\ ( g ` 0 ) =/= 0 ) <-> ( (/) =/= (/) /\ ( (/) ` 0 ) =/= 0 ) ) ) |
18 |
|
fveq2 |
|- ( g = (/) -> ( # ` g ) = ( # ` (/) ) ) |
19 |
18
|
oveq2d |
|- ( g = (/) -> ( 0 ..^ ( # ` g ) ) = ( 0 ..^ ( # ` (/) ) ) ) |
20 |
|
fveq2 |
|- ( g = (/) -> ( T ` g ) = ( T ` (/) ) ) |
21 |
20
|
fveq1d |
|- ( g = (/) -> ( ( T ` g ) ` m ) = ( ( T ` (/) ) ` m ) ) |
22 |
21
|
neeq1d |
|- ( g = (/) -> ( ( ( T ` g ) ` m ) =/= 0 <-> ( ( T ` (/) ) ` m ) =/= 0 ) ) |
23 |
19 22
|
raleqbidv |
|- ( g = (/) -> ( A. m e. ( 0 ..^ ( # ` g ) ) ( ( T ` g ) ` m ) =/= 0 <-> A. m e. ( 0 ..^ ( # ` (/) ) ) ( ( T ` (/) ) ` m ) =/= 0 ) ) |
24 |
17 23
|
imbi12d |
|- ( g = (/) -> ( ( ( g =/= (/) /\ ( g ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` g ) ) ( ( T ` g ) ` m ) =/= 0 ) <-> ( ( (/) =/= (/) /\ ( (/) ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` (/) ) ) ( ( T ` (/) ) ` m ) =/= 0 ) ) ) |
25 |
|
neeq1 |
|- ( g = e -> ( g =/= (/) <-> e =/= (/) ) ) |
26 |
|
fveq1 |
|- ( g = e -> ( g ` 0 ) = ( e ` 0 ) ) |
27 |
26
|
neeq1d |
|- ( g = e -> ( ( g ` 0 ) =/= 0 <-> ( e ` 0 ) =/= 0 ) ) |
28 |
25 27
|
anbi12d |
|- ( g = e -> ( ( g =/= (/) /\ ( g ` 0 ) =/= 0 ) <-> ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) ) ) |
29 |
|
fveq2 |
|- ( g = e -> ( # ` g ) = ( # ` e ) ) |
30 |
29
|
oveq2d |
|- ( g = e -> ( 0 ..^ ( # ` g ) ) = ( 0 ..^ ( # ` e ) ) ) |
31 |
|
fveq2 |
|- ( g = e -> ( T ` g ) = ( T ` e ) ) |
32 |
31
|
fveq1d |
|- ( g = e -> ( ( T ` g ) ` m ) = ( ( T ` e ) ` m ) ) |
33 |
32
|
neeq1d |
|- ( g = e -> ( ( ( T ` g ) ` m ) =/= 0 <-> ( ( T ` e ) ` m ) =/= 0 ) ) |
34 |
30 33
|
raleqbidv |
|- ( g = e -> ( A. m e. ( 0 ..^ ( # ` g ) ) ( ( T ` g ) ` m ) =/= 0 <-> A. m e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` m ) =/= 0 ) ) |
35 |
28 34
|
imbi12d |
|- ( g = e -> ( ( ( g =/= (/) /\ ( g ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` g ) ) ( ( T ` g ) ` m ) =/= 0 ) <-> ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` m ) =/= 0 ) ) ) |
36 |
|
neeq1 |
|- ( g = ( e ++ <" k "> ) -> ( g =/= (/) <-> ( e ++ <" k "> ) =/= (/) ) ) |
37 |
|
fveq1 |
|- ( g = ( e ++ <" k "> ) -> ( g ` 0 ) = ( ( e ++ <" k "> ) ` 0 ) ) |
38 |
37
|
neeq1d |
|- ( g = ( e ++ <" k "> ) -> ( ( g ` 0 ) =/= 0 <-> ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) |
39 |
36 38
|
anbi12d |
|- ( g = ( e ++ <" k "> ) -> ( ( g =/= (/) /\ ( g ` 0 ) =/= 0 ) <-> ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) ) |
40 |
|
fveq2 |
|- ( g = ( e ++ <" k "> ) -> ( # ` g ) = ( # ` ( e ++ <" k "> ) ) ) |
41 |
40
|
oveq2d |
|- ( g = ( e ++ <" k "> ) -> ( 0 ..^ ( # ` g ) ) = ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) |
42 |
|
fveq2 |
|- ( g = ( e ++ <" k "> ) -> ( T ` g ) = ( T ` ( e ++ <" k "> ) ) ) |
43 |
42
|
fveq1d |
|- ( g = ( e ++ <" k "> ) -> ( ( T ` g ) ` m ) = ( ( T ` ( e ++ <" k "> ) ) ` m ) ) |
44 |
43
|
neeq1d |
|- ( g = ( e ++ <" k "> ) -> ( ( ( T ` g ) ` m ) =/= 0 <-> ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) ) |
45 |
41 44
|
raleqbidv |
|- ( g = ( e ++ <" k "> ) -> ( A. m e. ( 0 ..^ ( # ` g ) ) ( ( T ` g ) ` m ) =/= 0 <-> A. m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) ) |
46 |
39 45
|
imbi12d |
|- ( g = ( e ++ <" k "> ) -> ( ( ( g =/= (/) /\ ( g ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` g ) ) ( ( T ` g ) ` m ) =/= 0 ) <-> ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) ) ) |
47 |
|
neeq1 |
|- ( g = F -> ( g =/= (/) <-> F =/= (/) ) ) |
48 |
|
fveq1 |
|- ( g = F -> ( g ` 0 ) = ( F ` 0 ) ) |
49 |
48
|
neeq1d |
|- ( g = F -> ( ( g ` 0 ) =/= 0 <-> ( F ` 0 ) =/= 0 ) ) |
50 |
47 49
|
anbi12d |
|- ( g = F -> ( ( g =/= (/) /\ ( g ` 0 ) =/= 0 ) <-> ( F =/= (/) /\ ( F ` 0 ) =/= 0 ) ) ) |
51 |
|
fveq2 |
|- ( g = F -> ( # ` g ) = ( # ` F ) ) |
52 |
51
|
oveq2d |
|- ( g = F -> ( 0 ..^ ( # ` g ) ) = ( 0 ..^ ( # ` F ) ) ) |
53 |
|
fveq2 |
|- ( g = F -> ( T ` g ) = ( T ` F ) ) |
54 |
53
|
fveq1d |
|- ( g = F -> ( ( T ` g ) ` m ) = ( ( T ` F ) ` m ) ) |
55 |
54
|
neeq1d |
|- ( g = F -> ( ( ( T ` g ) ` m ) =/= 0 <-> ( ( T ` F ) ` m ) =/= 0 ) ) |
56 |
52 55
|
raleqbidv |
|- ( g = F -> ( A. m e. ( 0 ..^ ( # ` g ) ) ( ( T ` g ) ` m ) =/= 0 <-> A. m e. ( 0 ..^ ( # ` F ) ) ( ( T ` F ) ` m ) =/= 0 ) ) |
57 |
50 56
|
imbi12d |
|- ( g = F -> ( ( ( g =/= (/) /\ ( g ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` g ) ) ( ( T ` g ) ` m ) =/= 0 ) <-> ( ( F =/= (/) /\ ( F ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` F ) ) ( ( T ` F ) ` m ) =/= 0 ) ) ) |
58 |
|
neirr |
|- -. (/) =/= (/) |
59 |
58
|
intnanr |
|- -. ( (/) =/= (/) /\ ( (/) ` 0 ) =/= 0 ) |
60 |
59
|
pm2.21i |
|- ( ( (/) =/= (/) /\ ( (/) ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` (/) ) ) ( ( T ` (/) ) ` m ) =/= 0 ) |
61 |
|
fveq2 |
|- ( n = m -> ( ( T ` e ) ` n ) = ( ( T ` e ) ` m ) ) |
62 |
61
|
neeq1d |
|- ( n = m -> ( ( ( T ` e ) ` n ) =/= 0 <-> ( ( T ` e ) ` m ) =/= 0 ) ) |
63 |
62
|
cbvralvw |
|- ( A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 <-> A. m e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` m ) =/= 0 ) |
64 |
63
|
imbi2i |
|- ( ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) <-> ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` m ) =/= 0 ) ) |
65 |
64
|
anbi2i |
|- ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) <-> ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` m ) =/= 0 ) ) ) |
66 |
|
simplr |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e = (/) ) -> m e. ( 0 ..^ ( # ` e ) ) ) |
67 |
|
noel |
|- -. m e. (/) |
68 |
|
fveq2 |
|- ( e = (/) -> ( # ` e ) = ( # ` (/) ) ) |
69 |
|
hash0 |
|- ( # ` (/) ) = 0 |
70 |
68 69
|
eqtrdi |
|- ( e = (/) -> ( # ` e ) = 0 ) |
71 |
70
|
oveq2d |
|- ( e = (/) -> ( 0 ..^ ( # ` e ) ) = ( 0 ..^ 0 ) ) |
72 |
|
fzo0 |
|- ( 0 ..^ 0 ) = (/) |
73 |
71 72
|
eqtrdi |
|- ( e = (/) -> ( 0 ..^ ( # ` e ) ) = (/) ) |
74 |
73
|
eleq2d |
|- ( e = (/) -> ( m e. ( 0 ..^ ( # ` e ) ) <-> m e. (/) ) ) |
75 |
67 74
|
mtbiri |
|- ( e = (/) -> -. m e. ( 0 ..^ ( # ` e ) ) ) |
76 |
75
|
adantl |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e = (/) ) -> -. m e. ( 0 ..^ ( # ` e ) ) ) |
77 |
66 76
|
pm2.21dd |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e = (/) ) -> ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) |
78 |
|
simp-6l |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> e e. Word RR ) |
79 |
|
simp-6r |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> k e. RR ) |
80 |
|
simplr |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> m e. ( 0 ..^ ( # ` e ) ) ) |
81 |
1 2 3 4
|
signstfvp |
|- ( ( e e. Word RR /\ k e. RR /\ m e. ( 0 ..^ ( # ` e ) ) ) -> ( ( T ` ( e ++ <" k "> ) ) ` m ) = ( ( T ` e ) ` m ) ) |
82 |
78 79 80 81
|
syl3anc |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> ( ( T ` ( e ++ <" k "> ) ) ` m ) = ( ( T ` e ) ` m ) ) |
83 |
|
simpr |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> e =/= (/) ) |
84 |
|
simp-5l |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> ( e e. Word RR /\ k e. RR ) ) |
85 |
|
simplrr |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ ( m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) /\ e =/= (/) ) ) -> ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) |
86 |
85
|
3anassrs |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) |
87 |
|
simpll |
|- ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> e e. Word RR ) |
88 |
|
s1cl |
|- ( k e. RR -> <" k "> e. Word RR ) |
89 |
88
|
ad2antlr |
|- ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> <" k "> e. Word RR ) |
90 |
|
lennncl |
|- ( ( e e. Word RR /\ e =/= (/) ) -> ( # ` e ) e. NN ) |
91 |
90
|
adantlr |
|- ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> ( # ` e ) e. NN ) |
92 |
|
fzo0end |
|- ( ( # ` e ) e. NN -> ( ( # ` e ) - 1 ) e. ( 0 ..^ ( # ` e ) ) ) |
93 |
|
elfzolt3b |
|- ( ( ( # ` e ) - 1 ) e. ( 0 ..^ ( # ` e ) ) -> 0 e. ( 0 ..^ ( # ` e ) ) ) |
94 |
91 92 93
|
3syl |
|- ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> 0 e. ( 0 ..^ ( # ` e ) ) ) |
95 |
|
ccatval1 |
|- ( ( e e. Word RR /\ <" k "> e. Word RR /\ 0 e. ( 0 ..^ ( # ` e ) ) ) -> ( ( e ++ <" k "> ) ` 0 ) = ( e ` 0 ) ) |
96 |
87 89 94 95
|
syl3anc |
|- ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> ( ( e ++ <" k "> ) ` 0 ) = ( e ` 0 ) ) |
97 |
96
|
neeq1d |
|- ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> ( ( ( e ++ <" k "> ) ` 0 ) =/= 0 <-> ( e ` 0 ) =/= 0 ) ) |
98 |
97
|
biimpa |
|- ( ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( e ` 0 ) =/= 0 ) |
99 |
84 83 86 98
|
syl21anc |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> ( e ` 0 ) =/= 0 ) |
100 |
|
simp-5r |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) |
101 |
83 99 100
|
mp2and |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) |
102 |
62 101 80
|
rspcdva |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> ( ( T ` e ) ` m ) =/= 0 ) |
103 |
82 102
|
eqnetrd |
|- ( ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) /\ e =/= (/) ) -> ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) |
104 |
77 103
|
pm2.61dane |
|- ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m e. ( 0 ..^ ( # ` e ) ) ) -> ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) |
105 |
|
simpr |
|- ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m = ( # ` e ) ) -> m = ( # ` e ) ) |
106 |
105
|
fveq2d |
|- ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m = ( # ` e ) ) -> ( ( T ` ( e ++ <" k "> ) ) ` m ) = ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) ) |
107 |
|
simpr |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e = (/) ) -> e = (/) ) |
108 |
|
simp-4r |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e = (/) ) -> k e. RR ) |
109 |
|
simplrl |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e = (/) ) -> ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) |
110 |
109
|
simprd |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e = (/) ) -> ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) |
111 |
|
oveq1 |
|- ( e = (/) -> ( e ++ <" k "> ) = ( (/) ++ <" k "> ) ) |
112 |
|
ccatlid |
|- ( <" k "> e. Word RR -> ( (/) ++ <" k "> ) = <" k "> ) |
113 |
88 112
|
syl |
|- ( k e. RR -> ( (/) ++ <" k "> ) = <" k "> ) |
114 |
111 113
|
sylan9eq |
|- ( ( e = (/) /\ k e. RR ) -> ( e ++ <" k "> ) = <" k "> ) |
115 |
114
|
fveq2d |
|- ( ( e = (/) /\ k e. RR ) -> ( T ` ( e ++ <" k "> ) ) = ( T ` <" k "> ) ) |
116 |
115
|
adantr |
|- ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( T ` ( e ++ <" k "> ) ) = ( T ` <" k "> ) ) |
117 |
1 2 3 4
|
signstf0 |
|- ( k e. RR -> ( T ` <" k "> ) = <" ( sgn ` k ) "> ) |
118 |
117
|
ad2antlr |
|- ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( T ` <" k "> ) = <" ( sgn ` k ) "> ) |
119 |
116 118
|
eqtrd |
|- ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( T ` ( e ++ <" k "> ) ) = <" ( sgn ` k ) "> ) |
120 |
70
|
ad2antrr |
|- ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( # ` e ) = 0 ) |
121 |
119 120
|
fveq12d |
|- ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) = ( <" ( sgn ` k ) "> ` 0 ) ) |
122 |
|
sgnclre |
|- ( k e. RR -> ( sgn ` k ) e. RR ) |
123 |
|
s1fv |
|- ( ( sgn ` k ) e. RR -> ( <" ( sgn ` k ) "> ` 0 ) = ( sgn ` k ) ) |
124 |
122 123
|
syl |
|- ( k e. RR -> ( <" ( sgn ` k ) "> ` 0 ) = ( sgn ` k ) ) |
125 |
124
|
ad2antlr |
|- ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( <" ( sgn ` k ) "> ` 0 ) = ( sgn ` k ) ) |
126 |
121 125
|
eqtrd |
|- ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) = ( sgn ` k ) ) |
127 |
|
simplr |
|- ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> k e. RR ) |
128 |
114
|
fveq1d |
|- ( ( e = (/) /\ k e. RR ) -> ( ( e ++ <" k "> ) ` 0 ) = ( <" k "> ` 0 ) ) |
129 |
|
s1fv |
|- ( k e. RR -> ( <" k "> ` 0 ) = k ) |
130 |
129
|
adantl |
|- ( ( e = (/) /\ k e. RR ) -> ( <" k "> ` 0 ) = k ) |
131 |
128 130
|
eqtrd |
|- ( ( e = (/) /\ k e. RR ) -> ( ( e ++ <" k "> ) ` 0 ) = k ) |
132 |
131
|
neeq1d |
|- ( ( e = (/) /\ k e. RR ) -> ( ( ( e ++ <" k "> ) ` 0 ) =/= 0 <-> k =/= 0 ) ) |
133 |
132
|
biimpa |
|- ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> k =/= 0 ) |
134 |
|
rexr |
|- ( k e. RR -> k e. RR* ) |
135 |
|
sgn0bi |
|- ( k e. RR* -> ( ( sgn ` k ) = 0 <-> k = 0 ) ) |
136 |
134 135
|
syl |
|- ( k e. RR -> ( ( sgn ` k ) = 0 <-> k = 0 ) ) |
137 |
136
|
necon3bid |
|- ( k e. RR -> ( ( sgn ` k ) =/= 0 <-> k =/= 0 ) ) |
138 |
137
|
biimpar |
|- ( ( k e. RR /\ k =/= 0 ) -> ( sgn ` k ) =/= 0 ) |
139 |
127 133 138
|
syl2anc |
|- ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( sgn ` k ) =/= 0 ) |
140 |
126 139
|
eqnetrd |
|- ( ( ( e = (/) /\ k e. RR ) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) =/= 0 ) |
141 |
107 108 110 140
|
syl21anc |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e = (/) ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) =/= 0 ) |
142 |
|
eldifsn |
|- ( e e. ( Word RR \ { (/) } ) <-> ( e e. Word RR /\ e =/= (/) ) ) |
143 |
142
|
biimpri |
|- ( ( e e. Word RR /\ e =/= (/) ) -> e e. ( Word RR \ { (/) } ) ) |
144 |
143
|
adantlr |
|- ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> e e. ( Word RR \ { (/) } ) ) |
145 |
|
simplr |
|- ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> k e. RR ) |
146 |
1 2 3 4
|
signstfvn |
|- ( ( e e. ( Word RR \ { (/) } ) /\ k e. RR ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) = ( ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) .+^ ( sgn ` k ) ) ) |
147 |
144 145 146
|
syl2anc |
|- ( ( ( e e. Word RR /\ k e. RR ) /\ e =/= (/) ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) = ( ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) .+^ ( sgn ` k ) ) ) |
148 |
147
|
ad4ant14 |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) = ( ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) .+^ ( sgn ` k ) ) ) |
149 |
90 92
|
syl |
|- ( ( e e. Word RR /\ e =/= (/) ) -> ( ( # ` e ) - 1 ) e. ( 0 ..^ ( # ` e ) ) ) |
150 |
1 2 3 4
|
signstcl |
|- ( ( e e. Word RR /\ ( ( # ` e ) - 1 ) e. ( 0 ..^ ( # ` e ) ) ) -> ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) e. { -u 1 , 0 , 1 } ) |
151 |
149 150
|
syldan |
|- ( ( e e. Word RR /\ e =/= (/) ) -> ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) e. { -u 1 , 0 , 1 } ) |
152 |
151
|
ad5ant15 |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) e. { -u 1 , 0 , 1 } ) |
153 |
|
sgncl |
|- ( k e. RR* -> ( sgn ` k ) e. { -u 1 , 0 , 1 } ) |
154 |
134 153
|
syl |
|- ( k e. RR -> ( sgn ` k ) e. { -u 1 , 0 , 1 } ) |
155 |
154
|
ad4antlr |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( sgn ` k ) e. { -u 1 , 0 , 1 } ) |
156 |
|
fveq2 |
|- ( n = ( ( # ` e ) - 1 ) -> ( ( T ` e ) ` n ) = ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) ) |
157 |
156
|
neeq1d |
|- ( n = ( ( # ` e ) - 1 ) -> ( ( ( T ` e ) ` n ) =/= 0 <-> ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) =/= 0 ) ) |
158 |
|
simpr |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> e =/= (/) ) |
159 |
|
simplll |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( e e. Word RR /\ k e. RR ) ) |
160 |
|
simplrl |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) |
161 |
160
|
simprd |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) |
162 |
159 158 161 98
|
syl21anc |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( e ` 0 ) =/= 0 ) |
163 |
|
simpllr |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) |
164 |
158 162 163
|
mp2and |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) |
165 |
90
|
ad4ant14 |
|- ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( # ` e ) e. NN ) |
166 |
165 92
|
syl |
|- ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( # ` e ) - 1 ) e. ( 0 ..^ ( # ` e ) ) ) |
167 |
166
|
adantllr |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( # ` e ) - 1 ) e. ( 0 ..^ ( # ` e ) ) ) |
168 |
157 164 167
|
rspcdva |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) =/= 0 ) |
169 |
1 2
|
signswn0 |
|- ( ( ( ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) e. { -u 1 , 0 , 1 } /\ ( sgn ` k ) e. { -u 1 , 0 , 1 } ) /\ ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) =/= 0 ) -> ( ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) .+^ ( sgn ` k ) ) =/= 0 ) |
170 |
152 155 168 169
|
syl21anc |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( ( T ` e ) ` ( ( # ` e ) - 1 ) ) .+^ ( sgn ` k ) ) =/= 0 ) |
171 |
148 170
|
eqnetrd |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) /\ e =/= (/) ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) =/= 0 ) |
172 |
141 171
|
pm2.61dane |
|- ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) =/= 0 ) |
173 |
172
|
anassrs |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) =/= 0 ) |
174 |
173
|
adantr |
|- ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m = ( # ` e ) ) -> ( ( T ` ( e ++ <" k "> ) ) ` ( # ` e ) ) =/= 0 ) |
175 |
106 174
|
eqnetrd |
|- ( ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) /\ m = ( # ` e ) ) -> ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) |
176 |
|
lencl |
|- ( e e. Word RR -> ( # ` e ) e. NN0 ) |
177 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
178 |
176 177
|
eleqtrdi |
|- ( e e. Word RR -> ( # ` e ) e. ( ZZ>= ` 0 ) ) |
179 |
178
|
ad4antr |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) -> ( # ` e ) e. ( ZZ>= ` 0 ) ) |
180 |
|
ccatws1len |
|- ( e e. Word RR -> ( # ` ( e ++ <" k "> ) ) = ( ( # ` e ) + 1 ) ) |
181 |
180
|
adantr |
|- ( ( e e. Word RR /\ k e. RR ) -> ( # ` ( e ++ <" k "> ) ) = ( ( # ` e ) + 1 ) ) |
182 |
181
|
oveq2d |
|- ( ( e e. Word RR /\ k e. RR ) -> ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) = ( 0 ..^ ( ( # ` e ) + 1 ) ) ) |
183 |
182
|
eleq2d |
|- ( ( e e. Word RR /\ k e. RR ) -> ( m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) <-> m e. ( 0 ..^ ( ( # ` e ) + 1 ) ) ) ) |
184 |
183
|
biimpa |
|- ( ( ( e e. Word RR /\ k e. RR ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) -> m e. ( 0 ..^ ( ( # ` e ) + 1 ) ) ) |
185 |
184
|
ad4ant14 |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) -> m e. ( 0 ..^ ( ( # ` e ) + 1 ) ) ) |
186 |
|
fzosplitsni |
|- ( ( # ` e ) e. ( ZZ>= ` 0 ) -> ( m e. ( 0 ..^ ( ( # ` e ) + 1 ) ) <-> ( m e. ( 0 ..^ ( # ` e ) ) \/ m = ( # ` e ) ) ) ) |
187 |
186
|
biimpa |
|- ( ( ( # ` e ) e. ( ZZ>= ` 0 ) /\ m e. ( 0 ..^ ( ( # ` e ) + 1 ) ) ) -> ( m e. ( 0 ..^ ( # ` e ) ) \/ m = ( # ` e ) ) ) |
188 |
179 185 187
|
syl2anc |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) -> ( m e. ( 0 ..^ ( # ` e ) ) \/ m = ( # ` e ) ) ) |
189 |
104 175 188
|
mpjaodan |
|- ( ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) /\ m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ) -> ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) |
190 |
189
|
ralrimiva |
|- ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. n e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` n ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) -> A. m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) |
191 |
65 190
|
sylanbr |
|- ( ( ( ( e e. Word RR /\ k e. RR ) /\ ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` m ) =/= 0 ) ) /\ ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) ) -> A. m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) |
192 |
191
|
exp31 |
|- ( ( e e. Word RR /\ k e. RR ) -> ( ( ( e =/= (/) /\ ( e ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` e ) ) ( ( T ` e ) ` m ) =/= 0 ) -> ( ( ( e ++ <" k "> ) =/= (/) /\ ( ( e ++ <" k "> ) ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` ( e ++ <" k "> ) ) ) ( ( T ` ( e ++ <" k "> ) ) ` m ) =/= 0 ) ) ) |
193 |
24 35 46 57 60 192
|
wrdind |
|- ( F e. Word RR -> ( ( F =/= (/) /\ ( F ` 0 ) =/= 0 ) -> A. m e. ( 0 ..^ ( # ` F ) ) ( ( T ` F ) ` m ) =/= 0 ) ) |
194 |
193
|
imp |
|- ( ( F e. Word RR /\ ( F =/= (/) /\ ( F ` 0 ) =/= 0 ) ) -> A. m e. ( 0 ..^ ( # ` F ) ) ( ( T ` F ) ` m ) =/= 0 ) |
195 |
194
|
adantr |
|- ( ( ( F e. Word RR /\ ( F =/= (/) /\ ( F ` 0 ) =/= 0 ) ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> A. m e. ( 0 ..^ ( # ` F ) ) ( ( T ` F ) ` m ) =/= 0 ) |
196 |
|
simpr |
|- ( ( ( F e. Word RR /\ ( F =/= (/) /\ ( F ` 0 ) =/= 0 ) ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> N e. ( 0 ..^ ( # ` F ) ) ) |
197 |
13 195 196
|
rspcdva |
|- ( ( ( F e. Word RR /\ ( F =/= (/) /\ ( F ` 0 ) =/= 0 ) ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` F ) ` N ) =/= 0 ) |
198 |
6 10 11 197
|
syl21anc |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` F ) ` N ) =/= 0 ) |