| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p |  |-  .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) | 
						
							| 2 |  | signsv.w |  |-  W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } | 
						
							| 3 |  | signsv.t |  |-  T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v |  |-  V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) | 
						
							| 5 |  | signsvf.e |  |-  ( ph -> E e. ( Word RR \ { (/) } ) ) | 
						
							| 6 |  | signsvf.0 |  |-  ( ph -> ( E ` 0 ) =/= 0 ) | 
						
							| 7 |  | signsvf.f |  |-  ( ph -> F = ( E ++ <" A "> ) ) | 
						
							| 8 |  | signsvf.a |  |-  ( ph -> A e. RR ) | 
						
							| 9 |  | signsvf.n |  |-  N = ( # ` E ) | 
						
							| 10 |  | signsvt.b |  |-  B = ( ( T ` E ) ` ( N - 1 ) ) | 
						
							| 11 | 7 | fveq2d |  |-  ( ph -> ( V ` F ) = ( V ` ( E ++ <" A "> ) ) ) | 
						
							| 12 | 1 2 3 4 | signsvfn |  |-  ( ( ( E e. ( Word RR \ { (/) } ) /\ ( E ` 0 ) =/= 0 ) /\ A e. RR ) -> ( V ` ( E ++ <" A "> ) ) = ( ( V ` E ) + if ( ( ( ( T ` E ) ` ( ( # ` E ) - 1 ) ) x. A ) < 0 , 1 , 0 ) ) ) | 
						
							| 13 | 5 6 8 12 | syl21anc |  |-  ( ph -> ( V ` ( E ++ <" A "> ) ) = ( ( V ` E ) + if ( ( ( ( T ` E ) ` ( ( # ` E ) - 1 ) ) x. A ) < 0 , 1 , 0 ) ) ) | 
						
							| 14 | 11 13 | eqtrd |  |-  ( ph -> ( V ` F ) = ( ( V ` E ) + if ( ( ( ( T ` E ) ` ( ( # ` E ) - 1 ) ) x. A ) < 0 , 1 , 0 ) ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> ( V ` F ) = ( ( V ` E ) + if ( ( ( ( T ` E ) ` ( ( # ` E ) - 1 ) ) x. A ) < 0 , 1 , 0 ) ) ) | 
						
							| 16 |  | 0red |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> 0 e. RR ) | 
						
							| 17 | 5 | adantr |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> E e. ( Word RR \ { (/) } ) ) | 
						
							| 18 | 17 | eldifad |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> E e. Word RR ) | 
						
							| 19 | 1 2 3 4 | signstf |  |-  ( E e. Word RR -> ( T ` E ) e. Word RR ) | 
						
							| 20 |  | wrdf |  |-  ( ( T ` E ) e. Word RR -> ( T ` E ) : ( 0 ..^ ( # ` ( T ` E ) ) ) --> RR ) | 
						
							| 21 | 18 19 20 | 3syl |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> ( T ` E ) : ( 0 ..^ ( # ` ( T ` E ) ) ) --> RR ) | 
						
							| 22 |  | eldifsn |  |-  ( E e. ( Word RR \ { (/) } ) <-> ( E e. Word RR /\ E =/= (/) ) ) | 
						
							| 23 | 5 22 | sylib |  |-  ( ph -> ( E e. Word RR /\ E =/= (/) ) ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> ( E e. Word RR /\ E =/= (/) ) ) | 
						
							| 25 |  | lennncl |  |-  ( ( E e. Word RR /\ E =/= (/) ) -> ( # ` E ) e. NN ) | 
						
							| 26 |  | fzo0end |  |-  ( ( # ` E ) e. NN -> ( ( # ` E ) - 1 ) e. ( 0 ..^ ( # ` E ) ) ) | 
						
							| 27 | 24 25 26 | 3syl |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> ( ( # ` E ) - 1 ) e. ( 0 ..^ ( # ` E ) ) ) | 
						
							| 28 | 1 2 3 4 | signstlen |  |-  ( E e. Word RR -> ( # ` ( T ` E ) ) = ( # ` E ) ) | 
						
							| 29 | 18 28 | syl |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> ( # ` ( T ` E ) ) = ( # ` E ) ) | 
						
							| 30 | 29 | oveq2d |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> ( 0 ..^ ( # ` ( T ` E ) ) ) = ( 0 ..^ ( # ` E ) ) ) | 
						
							| 31 | 27 30 | eleqtrrd |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> ( ( # ` E ) - 1 ) e. ( 0 ..^ ( # ` ( T ` E ) ) ) ) | 
						
							| 32 | 21 31 | ffvelcdmd |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> ( ( T ` E ) ` ( ( # ` E ) - 1 ) ) e. RR ) | 
						
							| 33 | 8 | adantr |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> A e. RR ) | 
						
							| 34 | 32 33 | remulcld |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> ( ( ( T ` E ) ` ( ( # ` E ) - 1 ) ) x. A ) e. RR ) | 
						
							| 35 |  | simpr |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> 0 < ( A x. B ) ) | 
						
							| 36 | 9 | oveq1i |  |-  ( N - 1 ) = ( ( # ` E ) - 1 ) | 
						
							| 37 | 36 | fveq2i |  |-  ( ( T ` E ) ` ( N - 1 ) ) = ( ( T ` E ) ` ( ( # ` E ) - 1 ) ) | 
						
							| 38 | 10 37 | eqtri |  |-  B = ( ( T ` E ) ` ( ( # ` E ) - 1 ) ) | 
						
							| 39 | 38 32 | eqeltrid |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> B e. RR ) | 
						
							| 40 | 39 | recnd |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> B e. CC ) | 
						
							| 41 | 33 | recnd |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> A e. CC ) | 
						
							| 42 | 40 41 | mulcomd |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> ( B x. A ) = ( A x. B ) ) | 
						
							| 43 | 35 42 | breqtrrd |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> 0 < ( B x. A ) ) | 
						
							| 44 | 38 | oveq1i |  |-  ( B x. A ) = ( ( ( T ` E ) ` ( ( # ` E ) - 1 ) ) x. A ) | 
						
							| 45 | 43 44 | breqtrdi |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> 0 < ( ( ( T ` E ) ` ( ( # ` E ) - 1 ) ) x. A ) ) | 
						
							| 46 | 16 34 45 | ltnsymd |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> -. ( ( ( T ` E ) ` ( ( # ` E ) - 1 ) ) x. A ) < 0 ) | 
						
							| 47 | 46 | iffalsed |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> if ( ( ( ( T ` E ) ` ( ( # ` E ) - 1 ) ) x. A ) < 0 , 1 , 0 ) = 0 ) | 
						
							| 48 | 47 | oveq2d |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> ( ( V ` E ) + if ( ( ( ( T ` E ) ` ( ( # ` E ) - 1 ) ) x. A ) < 0 , 1 , 0 ) ) = ( ( V ` E ) + 0 ) ) | 
						
							| 49 | 1 2 3 4 | signsvvf |  |-  V : Word RR --> NN0 | 
						
							| 50 | 49 | a1i |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> V : Word RR --> NN0 ) | 
						
							| 51 | 50 18 | ffvelcdmd |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> ( V ` E ) e. NN0 ) | 
						
							| 52 | 51 | nn0cnd |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> ( V ` E ) e. CC ) | 
						
							| 53 | 52 | addridd |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> ( ( V ` E ) + 0 ) = ( V ` E ) ) | 
						
							| 54 | 15 48 53 | 3eqtrd |  |-  ( ( ph /\ 0 < ( A x. B ) ) -> ( V ` F ) = ( V ` E ) ) |