Step |
Hyp |
Ref |
Expression |
1 |
|
signsv.p |
⊢ ⨣ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) ) |
2 |
|
signsv.w |
⊢ 𝑊 = { 〈 ( Base ‘ ndx ) , { - 1 , 0 , 1 } 〉 , 〈 ( +g ‘ ndx ) , ⨣ 〉 } |
3 |
|
signsv.t |
⊢ 𝑇 = ( 𝑓 ∈ Word ℝ ↦ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ↦ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) |
4 |
|
signsv.v |
⊢ 𝑉 = ( 𝑓 ∈ Word ℝ ↦ Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) ) |
5 |
|
signsvf.e |
⊢ ( 𝜑 → 𝐸 ∈ ( Word ℝ ∖ { ∅ } ) ) |
6 |
|
signsvf.0 |
⊢ ( 𝜑 → ( 𝐸 ‘ 0 ) ≠ 0 ) |
7 |
|
signsvf.f |
⊢ ( 𝜑 → 𝐹 = ( 𝐸 ++ 〈“ 𝐴 ”〉 ) ) |
8 |
|
signsvf.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
9 |
|
signsvf.n |
⊢ 𝑁 = ( ♯ ‘ 𝐸 ) |
10 |
|
signsvt.b |
⊢ 𝐵 = ( ( 𝑇 ‘ 𝐸 ) ‘ ( 𝑁 − 1 ) ) |
11 |
7
|
fveq2d |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝐹 ) = ( 𝑉 ‘ ( 𝐸 ++ 〈“ 𝐴 ”〉 ) ) ) |
12 |
1 2 3 4
|
signsvfn |
⊢ ( ( ( 𝐸 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐸 ‘ 0 ) ≠ 0 ) ∧ 𝐴 ∈ ℝ ) → ( 𝑉 ‘ ( 𝐸 ++ 〈“ 𝐴 ”〉 ) ) = ( ( 𝑉 ‘ 𝐸 ) + if ( ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 ) − 1 ) ) · 𝐴 ) < 0 , 1 , 0 ) ) ) |
13 |
5 6 8 12
|
syl21anc |
⊢ ( 𝜑 → ( 𝑉 ‘ ( 𝐸 ++ 〈“ 𝐴 ”〉 ) ) = ( ( 𝑉 ‘ 𝐸 ) + if ( ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 ) − 1 ) ) · 𝐴 ) < 0 , 1 , 0 ) ) ) |
14 |
11 13
|
eqtrd |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝐹 ) = ( ( 𝑉 ‘ 𝐸 ) + if ( ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 ) − 1 ) ) · 𝐴 ) < 0 , 1 , 0 ) ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → ( 𝑉 ‘ 𝐹 ) = ( ( 𝑉 ‘ 𝐸 ) + if ( ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 ) − 1 ) ) · 𝐴 ) < 0 , 1 , 0 ) ) ) |
16 |
|
0red |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → 0 ∈ ℝ ) |
17 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → 𝐸 ∈ ( Word ℝ ∖ { ∅ } ) ) |
18 |
17
|
eldifad |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → 𝐸 ∈ Word ℝ ) |
19 |
1 2 3 4
|
signstf |
⊢ ( 𝐸 ∈ Word ℝ → ( 𝑇 ‘ 𝐸 ) ∈ Word ℝ ) |
20 |
|
wrdf |
⊢ ( ( 𝑇 ‘ 𝐸 ) ∈ Word ℝ → ( 𝑇 ‘ 𝐸 ) : ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ 𝐸 ) ) ) ⟶ ℝ ) |
21 |
18 19 20
|
3syl |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → ( 𝑇 ‘ 𝐸 ) : ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ 𝐸 ) ) ) ⟶ ℝ ) |
22 |
|
eldifsn |
⊢ ( 𝐸 ∈ ( Word ℝ ∖ { ∅ } ) ↔ ( 𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅ ) ) |
23 |
5 22
|
sylib |
⊢ ( 𝜑 → ( 𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅ ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → ( 𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅ ) ) |
25 |
|
lennncl |
⊢ ( ( 𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅ ) → ( ♯ ‘ 𝐸 ) ∈ ℕ ) |
26 |
|
fzo0end |
⊢ ( ( ♯ ‘ 𝐸 ) ∈ ℕ → ( ( ♯ ‘ 𝐸 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) |
27 |
24 25 26
|
3syl |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → ( ( ♯ ‘ 𝐸 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) |
28 |
1 2 3 4
|
signstlen |
⊢ ( 𝐸 ∈ Word ℝ → ( ♯ ‘ ( 𝑇 ‘ 𝐸 ) ) = ( ♯ ‘ 𝐸 ) ) |
29 |
18 28
|
syl |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → ( ♯ ‘ ( 𝑇 ‘ 𝐸 ) ) = ( ♯ ‘ 𝐸 ) ) |
30 |
29
|
oveq2d |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ 𝐸 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) |
31 |
27 30
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → ( ( ♯ ‘ 𝐸 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ 𝐸 ) ) ) ) |
32 |
21 31
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 ) − 1 ) ) ∈ ℝ ) |
33 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → 𝐴 ∈ ℝ ) |
34 |
32 33
|
remulcld |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 ) − 1 ) ) · 𝐴 ) ∈ ℝ ) |
35 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → 0 < ( 𝐴 · 𝐵 ) ) |
36 |
9
|
oveq1i |
⊢ ( 𝑁 − 1 ) = ( ( ♯ ‘ 𝐸 ) − 1 ) |
37 |
36
|
fveq2i |
⊢ ( ( 𝑇 ‘ 𝐸 ) ‘ ( 𝑁 − 1 ) ) = ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 ) − 1 ) ) |
38 |
10 37
|
eqtri |
⊢ 𝐵 = ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 ) − 1 ) ) |
39 |
38 32
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → 𝐵 ∈ ℝ ) |
40 |
39
|
recnd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → 𝐵 ∈ ℂ ) |
41 |
33
|
recnd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → 𝐴 ∈ ℂ ) |
42 |
40 41
|
mulcomd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → ( 𝐵 · 𝐴 ) = ( 𝐴 · 𝐵 ) ) |
43 |
35 42
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → 0 < ( 𝐵 · 𝐴 ) ) |
44 |
38
|
oveq1i |
⊢ ( 𝐵 · 𝐴 ) = ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 ) − 1 ) ) · 𝐴 ) |
45 |
43 44
|
breqtrdi |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → 0 < ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 ) − 1 ) ) · 𝐴 ) ) |
46 |
16 34 45
|
ltnsymd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → ¬ ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 ) − 1 ) ) · 𝐴 ) < 0 ) |
47 |
46
|
iffalsed |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → if ( ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 ) − 1 ) ) · 𝐴 ) < 0 , 1 , 0 ) = 0 ) |
48 |
47
|
oveq2d |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → ( ( 𝑉 ‘ 𝐸 ) + if ( ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 ) − 1 ) ) · 𝐴 ) < 0 , 1 , 0 ) ) = ( ( 𝑉 ‘ 𝐸 ) + 0 ) ) |
49 |
1 2 3 4
|
signsvvf |
⊢ 𝑉 : Word ℝ ⟶ ℕ0 |
50 |
49
|
a1i |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → 𝑉 : Word ℝ ⟶ ℕ0 ) |
51 |
50 18
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → ( 𝑉 ‘ 𝐸 ) ∈ ℕ0 ) |
52 |
51
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → ( 𝑉 ‘ 𝐸 ) ∈ ℂ ) |
53 |
52
|
addid1d |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → ( ( 𝑉 ‘ 𝐸 ) + 0 ) = ( 𝑉 ‘ 𝐸 ) ) |
54 |
15 48 53
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 · 𝐵 ) ) → ( 𝑉 ‘ 𝐹 ) = ( 𝑉 ‘ 𝐸 ) ) |