| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p | ⊢  ⨣   =  ( 𝑎  ∈  { - 1 ,  0 ,  1 } ,  𝑏  ∈  { - 1 ,  0 ,  1 }  ↦  if ( 𝑏  =  0 ,  𝑎 ,  𝑏 ) ) | 
						
							| 2 |  | signsv.w | ⊢ 𝑊  =  { 〈 ( Base ‘ ndx ) ,  { - 1 ,  0 ,  1 } 〉 ,  〈 ( +g ‘ ndx ) ,   ⨣  〉 } | 
						
							| 3 |  | signsv.t | ⊢ 𝑇  =  ( 𝑓  ∈  Word  ℝ  ↦  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) )  ↦  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑛 )  ↦  ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v | ⊢ 𝑉  =  ( 𝑓  ∈  Word  ℝ  ↦  Σ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 ) ) | 
						
							| 5 |  | signsvf.e | ⊢ ( 𝜑  →  𝐸  ∈  ( Word  ℝ  ∖  { ∅ } ) ) | 
						
							| 6 |  | signsvf.0 | ⊢ ( 𝜑  →  ( 𝐸 ‘ 0 )  ≠  0 ) | 
						
							| 7 |  | signsvf.f | ⊢ ( 𝜑  →  𝐹  =  ( 𝐸  ++  〈“ 𝐴 ”〉 ) ) | 
						
							| 8 |  | signsvf.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 9 |  | signsvf.n | ⊢ 𝑁  =  ( ♯ ‘ 𝐸 ) | 
						
							| 10 |  | signsvt.b | ⊢ 𝐵  =  ( ( 𝑇 ‘ 𝐸 ) ‘ ( 𝑁  −  1 ) ) | 
						
							| 11 | 7 | fveq2d | ⊢ ( 𝜑  →  ( 𝑉 ‘ 𝐹 )  =  ( 𝑉 ‘ ( 𝐸  ++  〈“ 𝐴 ”〉 ) ) ) | 
						
							| 12 | 1 2 3 4 | signsvfn | ⊢ ( ( ( 𝐸  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐸 ‘ 0 )  ≠  0 )  ∧  𝐴  ∈  ℝ )  →  ( 𝑉 ‘ ( 𝐸  ++  〈“ 𝐴 ”〉 ) )  =  ( ( 𝑉 ‘ 𝐸 )  +  if ( ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 )  −  1 ) )  ·  𝐴 )  <  0 ,  1 ,  0 ) ) ) | 
						
							| 13 | 5 6 8 12 | syl21anc | ⊢ ( 𝜑  →  ( 𝑉 ‘ ( 𝐸  ++  〈“ 𝐴 ”〉 ) )  =  ( ( 𝑉 ‘ 𝐸 )  +  if ( ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 )  −  1 ) )  ·  𝐴 )  <  0 ,  1 ,  0 ) ) ) | 
						
							| 14 | 11 13 | eqtrd | ⊢ ( 𝜑  →  ( 𝑉 ‘ 𝐹 )  =  ( ( 𝑉 ‘ 𝐸 )  +  if ( ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 )  −  1 ) )  ·  𝐴 )  <  0 ,  1 ,  0 ) ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  ( 𝑉 ‘ 𝐹 )  =  ( ( 𝑉 ‘ 𝐸 )  +  if ( ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 )  −  1 ) )  ·  𝐴 )  <  0 ,  1 ,  0 ) ) ) | 
						
							| 16 |  | 0red | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  0  ∈  ℝ ) | 
						
							| 17 | 5 | adantr | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  𝐸  ∈  ( Word  ℝ  ∖  { ∅ } ) ) | 
						
							| 18 | 17 | eldifad | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  𝐸  ∈  Word  ℝ ) | 
						
							| 19 | 1 2 3 4 | signstf | ⊢ ( 𝐸  ∈  Word  ℝ  →  ( 𝑇 ‘ 𝐸 )  ∈  Word  ℝ ) | 
						
							| 20 |  | wrdf | ⊢ ( ( 𝑇 ‘ 𝐸 )  ∈  Word  ℝ  →  ( 𝑇 ‘ 𝐸 ) : ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ 𝐸 ) ) ) ⟶ ℝ ) | 
						
							| 21 | 18 19 20 | 3syl | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  ( 𝑇 ‘ 𝐸 ) : ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ 𝐸 ) ) ) ⟶ ℝ ) | 
						
							| 22 |  | eldifsn | ⊢ ( 𝐸  ∈  ( Word  ℝ  ∖  { ∅ } )  ↔  ( 𝐸  ∈  Word  ℝ  ∧  𝐸  ≠  ∅ ) ) | 
						
							| 23 | 5 22 | sylib | ⊢ ( 𝜑  →  ( 𝐸  ∈  Word  ℝ  ∧  𝐸  ≠  ∅ ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  ( 𝐸  ∈  Word  ℝ  ∧  𝐸  ≠  ∅ ) ) | 
						
							| 25 |  | lennncl | ⊢ ( ( 𝐸  ∈  Word  ℝ  ∧  𝐸  ≠  ∅ )  →  ( ♯ ‘ 𝐸 )  ∈  ℕ ) | 
						
							| 26 |  | fzo0end | ⊢ ( ( ♯ ‘ 𝐸 )  ∈  ℕ  →  ( ( ♯ ‘ 𝐸 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) | 
						
							| 27 | 24 25 26 | 3syl | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  ( ( ♯ ‘ 𝐸 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) | 
						
							| 28 | 1 2 3 4 | signstlen | ⊢ ( 𝐸  ∈  Word  ℝ  →  ( ♯ ‘ ( 𝑇 ‘ 𝐸 ) )  =  ( ♯ ‘ 𝐸 ) ) | 
						
							| 29 | 18 28 | syl | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  ( ♯ ‘ ( 𝑇 ‘ 𝐸 ) )  =  ( ♯ ‘ 𝐸 ) ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ 𝐸 ) ) )  =  ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) | 
						
							| 31 | 27 30 | eleqtrrd | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  ( ( ♯ ‘ 𝐸 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ 𝐸 ) ) ) ) | 
						
							| 32 | 21 31 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 )  −  1 ) )  ∈  ℝ ) | 
						
							| 33 | 8 | adantr | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 34 | 32 33 | remulcld | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 )  −  1 ) )  ·  𝐴 )  ∈  ℝ ) | 
						
							| 35 |  | simpr | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  0  <  ( 𝐴  ·  𝐵 ) ) | 
						
							| 36 | 9 | oveq1i | ⊢ ( 𝑁  −  1 )  =  ( ( ♯ ‘ 𝐸 )  −  1 ) | 
						
							| 37 | 36 | fveq2i | ⊢ ( ( 𝑇 ‘ 𝐸 ) ‘ ( 𝑁  −  1 ) )  =  ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 )  −  1 ) ) | 
						
							| 38 | 10 37 | eqtri | ⊢ 𝐵  =  ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 )  −  1 ) ) | 
						
							| 39 | 38 32 | eqeltrid | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 40 | 39 | recnd | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 41 | 33 | recnd | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 42 | 40 41 | mulcomd | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  ( 𝐵  ·  𝐴 )  =  ( 𝐴  ·  𝐵 ) ) | 
						
							| 43 | 35 42 | breqtrrd | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  0  <  ( 𝐵  ·  𝐴 ) ) | 
						
							| 44 | 38 | oveq1i | ⊢ ( 𝐵  ·  𝐴 )  =  ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 )  −  1 ) )  ·  𝐴 ) | 
						
							| 45 | 43 44 | breqtrdi | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  0  <  ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 )  −  1 ) )  ·  𝐴 ) ) | 
						
							| 46 | 16 34 45 | ltnsymd | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  ¬  ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 )  −  1 ) )  ·  𝐴 )  <  0 ) | 
						
							| 47 | 46 | iffalsed | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  if ( ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 )  −  1 ) )  ·  𝐴 )  <  0 ,  1 ,  0 )  =  0 ) | 
						
							| 48 | 47 | oveq2d | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  ( ( 𝑉 ‘ 𝐸 )  +  if ( ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 )  −  1 ) )  ·  𝐴 )  <  0 ,  1 ,  0 ) )  =  ( ( 𝑉 ‘ 𝐸 )  +  0 ) ) | 
						
							| 49 | 1 2 3 4 | signsvvf | ⊢ 𝑉 : Word  ℝ ⟶ ℕ0 | 
						
							| 50 | 49 | a1i | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  𝑉 : Word  ℝ ⟶ ℕ0 ) | 
						
							| 51 | 50 18 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  ( 𝑉 ‘ 𝐸 )  ∈  ℕ0 ) | 
						
							| 52 | 51 | nn0cnd | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  ( 𝑉 ‘ 𝐸 )  ∈  ℂ ) | 
						
							| 53 | 52 | addridd | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  ( ( 𝑉 ‘ 𝐸 )  +  0 )  =  ( 𝑉 ‘ 𝐸 ) ) | 
						
							| 54 | 15 48 53 | 3eqtrd | ⊢ ( ( 𝜑  ∧  0  <  ( 𝐴  ·  𝐵 ) )  →  ( 𝑉 ‘ 𝐹 )  =  ( 𝑉 ‘ 𝐸 ) ) |