| Step |
Hyp |
Ref |
Expression |
| 1 |
|
signsv.p |
⊢ ⨣ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) ) |
| 2 |
|
signsv.w |
⊢ 𝑊 = { 〈 ( Base ‘ ndx ) , { - 1 , 0 , 1 } 〉 , 〈 ( +g ‘ ndx ) , ⨣ 〉 } |
| 3 |
|
signsv.t |
⊢ 𝑇 = ( 𝑓 ∈ Word ℝ ↦ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ↦ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) |
| 4 |
|
signsv.v |
⊢ 𝑉 = ( 𝑓 ∈ Word ℝ ↦ Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) ) |
| 5 |
|
signsvf.e |
⊢ ( 𝜑 → 𝐸 ∈ ( Word ℝ ∖ { ∅ } ) ) |
| 6 |
|
signsvf.0 |
⊢ ( 𝜑 → ( 𝐸 ‘ 0 ) ≠ 0 ) |
| 7 |
|
signsvf.f |
⊢ ( 𝜑 → 𝐹 = ( 𝐸 ++ 〈“ 𝐴 ”〉 ) ) |
| 8 |
|
signsvf.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 9 |
|
signsvf.n |
⊢ 𝑁 = ( ♯ ‘ 𝐸 ) |
| 10 |
|
signsvt.b |
⊢ 𝐵 = ( ( 𝑇 ‘ 𝐸 ) ‘ ( 𝑁 − 1 ) ) |
| 11 |
7
|
fveq2d |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝐹 ) = ( 𝑉 ‘ ( 𝐸 ++ 〈“ 𝐴 ”〉 ) ) ) |
| 12 |
1 2 3 4
|
signsvfn |
⊢ ( ( ( 𝐸 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐸 ‘ 0 ) ≠ 0 ) ∧ 𝐴 ∈ ℝ ) → ( 𝑉 ‘ ( 𝐸 ++ 〈“ 𝐴 ”〉 ) ) = ( ( 𝑉 ‘ 𝐸 ) + if ( ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 ) − 1 ) ) · 𝐴 ) < 0 , 1 , 0 ) ) ) |
| 13 |
5 6 8 12
|
syl21anc |
⊢ ( 𝜑 → ( 𝑉 ‘ ( 𝐸 ++ 〈“ 𝐴 ”〉 ) ) = ( ( 𝑉 ‘ 𝐸 ) + if ( ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 ) − 1 ) ) · 𝐴 ) < 0 , 1 , 0 ) ) ) |
| 14 |
11 13
|
eqtrd |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝐹 ) = ( ( 𝑉 ‘ 𝐸 ) + if ( ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 ) − 1 ) ) · 𝐴 ) < 0 , 1 , 0 ) ) ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( 𝑉 ‘ 𝐹 ) = ( ( 𝑉 ‘ 𝐸 ) + if ( ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 ) − 1 ) ) · 𝐴 ) < 0 , 1 , 0 ) ) ) |
| 16 |
9
|
oveq1i |
⊢ ( 𝑁 − 1 ) = ( ( ♯ ‘ 𝐸 ) − 1 ) |
| 17 |
16
|
fveq2i |
⊢ ( ( 𝑇 ‘ 𝐸 ) ‘ ( 𝑁 − 1 ) ) = ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 ) − 1 ) ) |
| 18 |
10 17
|
eqtri |
⊢ 𝐵 = ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 ) − 1 ) ) |
| 19 |
18
|
oveq1i |
⊢ ( 𝐵 · 𝐴 ) = ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 ) − 1 ) ) · 𝐴 ) |
| 20 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → 𝐸 ∈ ( Word ℝ ∖ { ∅ } ) ) |
| 21 |
20
|
eldifad |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → 𝐸 ∈ Word ℝ ) |
| 22 |
1 2 3 4
|
signstf |
⊢ ( 𝐸 ∈ Word ℝ → ( 𝑇 ‘ 𝐸 ) ∈ Word ℝ ) |
| 23 |
|
wrdf |
⊢ ( ( 𝑇 ‘ 𝐸 ) ∈ Word ℝ → ( 𝑇 ‘ 𝐸 ) : ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ 𝐸 ) ) ) ⟶ ℝ ) |
| 24 |
21 22 23
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( 𝑇 ‘ 𝐸 ) : ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ 𝐸 ) ) ) ⟶ ℝ ) |
| 25 |
|
eldifsn |
⊢ ( 𝐸 ∈ ( Word ℝ ∖ { ∅ } ) ↔ ( 𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅ ) ) |
| 26 |
5 25
|
sylib |
⊢ ( 𝜑 → ( 𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅ ) ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( 𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅ ) ) |
| 28 |
|
lennncl |
⊢ ( ( 𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅ ) → ( ♯ ‘ 𝐸 ) ∈ ℕ ) |
| 29 |
|
fzo0end |
⊢ ( ( ♯ ‘ 𝐸 ) ∈ ℕ → ( ( ♯ ‘ 𝐸 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) |
| 30 |
27 28 29
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( ( ♯ ‘ 𝐸 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) |
| 31 |
1 2 3 4
|
signstlen |
⊢ ( 𝐸 ∈ Word ℝ → ( ♯ ‘ ( 𝑇 ‘ 𝐸 ) ) = ( ♯ ‘ 𝐸 ) ) |
| 32 |
21 31
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( ♯ ‘ ( 𝑇 ‘ 𝐸 ) ) = ( ♯ ‘ 𝐸 ) ) |
| 33 |
32
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ 𝐸 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) |
| 34 |
30 33
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( ( ♯ ‘ 𝐸 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ ( 𝑇 ‘ 𝐸 ) ) ) ) |
| 35 |
24 34
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 ) − 1 ) ) ∈ ℝ ) |
| 36 |
18 35
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → 𝐵 ∈ ℝ ) |
| 37 |
36
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → 𝐵 ∈ ℂ ) |
| 38 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → 𝐴 ∈ ℝ ) |
| 39 |
38
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → 𝐴 ∈ ℂ ) |
| 40 |
37 39
|
mulcomd |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( 𝐵 · 𝐴 ) = ( 𝐴 · 𝐵 ) ) |
| 41 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( 𝐴 · 𝐵 ) < 0 ) |
| 42 |
40 41
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( 𝐵 · 𝐴 ) < 0 ) |
| 43 |
19 42
|
eqbrtrrid |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 ) − 1 ) ) · 𝐴 ) < 0 ) |
| 44 |
43
|
iftrued |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → if ( ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 ) − 1 ) ) · 𝐴 ) < 0 , 1 , 0 ) = 1 ) |
| 45 |
44
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( ( 𝑉 ‘ 𝐸 ) + if ( ( ( ( 𝑇 ‘ 𝐸 ) ‘ ( ( ♯ ‘ 𝐸 ) − 1 ) ) · 𝐴 ) < 0 , 1 , 0 ) ) = ( ( 𝑉 ‘ 𝐸 ) + 1 ) ) |
| 46 |
15 45
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( ( 𝑉 ‘ 𝐸 ) + 1 ) = ( 𝑉 ‘ 𝐹 ) ) |
| 47 |
1 2 3 4
|
signsvvf |
⊢ 𝑉 : Word ℝ ⟶ ℕ0 |
| 48 |
47
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → 𝑉 : Word ℝ ⟶ ℕ0 ) |
| 49 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → 𝐹 = ( 𝐸 ++ 〈“ 𝐴 ”〉 ) ) |
| 50 |
38
|
s1cld |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → 〈“ 𝐴 ”〉 ∈ Word ℝ ) |
| 51 |
|
ccatcl |
⊢ ( ( 𝐸 ∈ Word ℝ ∧ 〈“ 𝐴 ”〉 ∈ Word ℝ ) → ( 𝐸 ++ 〈“ 𝐴 ”〉 ) ∈ Word ℝ ) |
| 52 |
21 50 51
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( 𝐸 ++ 〈“ 𝐴 ”〉 ) ∈ Word ℝ ) |
| 53 |
49 52
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → 𝐹 ∈ Word ℝ ) |
| 54 |
48 53
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( 𝑉 ‘ 𝐹 ) ∈ ℕ0 ) |
| 55 |
54
|
nn0cnd |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( 𝑉 ‘ 𝐹 ) ∈ ℂ ) |
| 56 |
48 21
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( 𝑉 ‘ 𝐸 ) ∈ ℕ0 ) |
| 57 |
56
|
nn0cnd |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( 𝑉 ‘ 𝐸 ) ∈ ℂ ) |
| 58 |
|
1cnd |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → 1 ∈ ℂ ) |
| 59 |
55 57 58
|
subaddd |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( ( ( 𝑉 ‘ 𝐹 ) − ( 𝑉 ‘ 𝐸 ) ) = 1 ↔ ( ( 𝑉 ‘ 𝐸 ) + 1 ) = ( 𝑉 ‘ 𝐹 ) ) ) |
| 60 |
46 59
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( ( 𝑉 ‘ 𝐹 ) − ( 𝑉 ‘ 𝐸 ) ) = 1 ) |