| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p | ⊢  ⨣   =  ( 𝑎  ∈  { - 1 ,  0 ,  1 } ,  𝑏  ∈  { - 1 ,  0 ,  1 }  ↦  if ( 𝑏  =  0 ,  𝑎 ,  𝑏 ) ) | 
						
							| 2 |  | signsv.w | ⊢ 𝑊  =  { 〈 ( Base ‘ ndx ) ,  { - 1 ,  0 ,  1 } 〉 ,  〈 ( +g ‘ ndx ) ,   ⨣  〉 } | 
						
							| 3 |  | signsv.t | ⊢ 𝑇  =  ( 𝑓  ∈  Word  ℝ  ↦  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) )  ↦  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑛 )  ↦  ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v | ⊢ 𝑉  =  ( 𝑓  ∈  Word  ℝ  ↦  Σ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 ) ) | 
						
							| 5 |  | s1cl | ⊢ ( 𝐾  ∈  ℝ  →  〈“ 𝐾 ”〉  ∈  Word  ℝ ) | 
						
							| 6 | 1 2 3 4 | signsvvfval | ⊢ ( 〈“ 𝐾 ”〉  ∈  Word  ℝ  →  ( 𝑉 ‘ 〈“ 𝐾 ”〉 )  =  Σ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 〈“ 𝐾 ”〉 ) ) if ( ( ( 𝑇 ‘ 〈“ 𝐾 ”〉 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 〈“ 𝐾 ”〉 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝐾  ∈  ℝ  →  ( 𝑉 ‘ 〈“ 𝐾 ”〉 )  =  Σ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 〈“ 𝐾 ”〉 ) ) if ( ( ( 𝑇 ‘ 〈“ 𝐾 ”〉 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 〈“ 𝐾 ”〉 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 ) ) | 
						
							| 8 |  | s1len | ⊢ ( ♯ ‘ 〈“ 𝐾 ”〉 )  =  1 | 
						
							| 9 | 8 | oveq2i | ⊢ ( 1 ..^ ( ♯ ‘ 〈“ 𝐾 ”〉 ) )  =  ( 1 ..^ 1 ) | 
						
							| 10 |  | fzo0 | ⊢ ( 1 ..^ 1 )  =  ∅ | 
						
							| 11 | 9 10 | eqtri | ⊢ ( 1 ..^ ( ♯ ‘ 〈“ 𝐾 ”〉 ) )  =  ∅ | 
						
							| 12 | 11 | sumeq1i | ⊢ Σ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 〈“ 𝐾 ”〉 ) ) if ( ( ( 𝑇 ‘ 〈“ 𝐾 ”〉 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 〈“ 𝐾 ”〉 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 )  =  Σ 𝑗  ∈  ∅ if ( ( ( 𝑇 ‘ 〈“ 𝐾 ”〉 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 〈“ 𝐾 ”〉 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 ) | 
						
							| 13 |  | sum0 | ⊢ Σ 𝑗  ∈  ∅ if ( ( ( 𝑇 ‘ 〈“ 𝐾 ”〉 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 〈“ 𝐾 ”〉 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 )  =  0 | 
						
							| 14 | 12 13 | eqtri | ⊢ Σ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 〈“ 𝐾 ”〉 ) ) if ( ( ( 𝑇 ‘ 〈“ 𝐾 ”〉 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 〈“ 𝐾 ”〉 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 )  =  0 | 
						
							| 15 | 7 14 | eqtrdi | ⊢ ( 𝐾  ∈  ℝ  →  ( 𝑉 ‘ 〈“ 𝐾 ”〉 )  =  0 ) |