Metamath Proof Explorer


Theorem signsvf1

Description: In a single-letter word, which represents a constant polynomial, there is no change of sign. (Contributed by Thierry Arnoux, 8-Oct-2018)

Ref Expression
Hypotheses signsv.p = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
signsv.w 𝑊 = { ⟨ ( Base ‘ ndx ) , { - 1 , 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ }
signsv.t 𝑇 = ( 𝑓 ∈ Word ℝ ↦ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ↦ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( sgn ‘ ( 𝑓𝑖 ) ) ) ) ) )
signsv.v 𝑉 = ( 𝑓 ∈ Word ℝ ↦ Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) )
Assertion signsvf1 ( 𝐾 ∈ ℝ → ( 𝑉 ‘ ⟨“ 𝐾 ”⟩ ) = 0 )

Proof

Step Hyp Ref Expression
1 signsv.p = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
2 signsv.w 𝑊 = { ⟨ ( Base ‘ ndx ) , { - 1 , 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ }
3 signsv.t 𝑇 = ( 𝑓 ∈ Word ℝ ↦ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ↦ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( sgn ‘ ( 𝑓𝑖 ) ) ) ) ) )
4 signsv.v 𝑉 = ( 𝑓 ∈ Word ℝ ↦ Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) )
5 s1cl ( 𝐾 ∈ ℝ → ⟨“ 𝐾 ”⟩ ∈ Word ℝ )
6 1 2 3 4 signsvvfval ( ⟨“ 𝐾 ”⟩ ∈ Word ℝ → ( 𝑉 ‘ ⟨“ 𝐾 ”⟩ ) = Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ ⟨“ 𝐾 ”⟩ ) ) if ( ( ( 𝑇 ‘ ⟨“ 𝐾 ”⟩ ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ ⟨“ 𝐾 ”⟩ ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) )
7 5 6 syl ( 𝐾 ∈ ℝ → ( 𝑉 ‘ ⟨“ 𝐾 ”⟩ ) = Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ ⟨“ 𝐾 ”⟩ ) ) if ( ( ( 𝑇 ‘ ⟨“ 𝐾 ”⟩ ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ ⟨“ 𝐾 ”⟩ ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) )
8 s1len ( ♯ ‘ ⟨“ 𝐾 ”⟩ ) = 1
9 8 oveq2i ( 1 ..^ ( ♯ ‘ ⟨“ 𝐾 ”⟩ ) ) = ( 1 ..^ 1 )
10 fzo0 ( 1 ..^ 1 ) = ∅
11 9 10 eqtri ( 1 ..^ ( ♯ ‘ ⟨“ 𝐾 ”⟩ ) ) = ∅
12 11 sumeq1i Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ ⟨“ 𝐾 ”⟩ ) ) if ( ( ( 𝑇 ‘ ⟨“ 𝐾 ”⟩ ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ ⟨“ 𝐾 ”⟩ ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) = Σ 𝑗 ∈ ∅ if ( ( ( 𝑇 ‘ ⟨“ 𝐾 ”⟩ ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ ⟨“ 𝐾 ”⟩ ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 )
13 sum0 Σ 𝑗 ∈ ∅ if ( ( ( 𝑇 ‘ ⟨“ 𝐾 ”⟩ ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ ⟨“ 𝐾 ”⟩ ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) = 0
14 12 13 eqtri Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ ⟨“ 𝐾 ”⟩ ) ) if ( ( ( 𝑇 ‘ ⟨“ 𝐾 ”⟩ ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ ⟨“ 𝐾 ”⟩ ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) = 0
15 7 14 eqtrdi ( 𝐾 ∈ ℝ → ( 𝑉 ‘ ⟨“ 𝐾 ”⟩ ) = 0 )