Metamath Proof Explorer


Theorem sitmfval

Description: Value of the integral distance between two simple functions. (Contributed by Thierry Arnoux, 30-Jan-2018)

Ref Expression
Hypotheses sitmval.d
|- D = ( dist ` W )
sitmval.1
|- ( ph -> W e. V )
sitmval.2
|- ( ph -> M e. U. ran measures )
sitmfval.1
|- ( ph -> F e. dom ( W sitg M ) )
sitmfval.2
|- ( ph -> G e. dom ( W sitg M ) )
Assertion sitmfval
|- ( ph -> ( F ( W sitm M ) G ) = ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( F oF D G ) ) )

Proof

Step Hyp Ref Expression
1 sitmval.d
 |-  D = ( dist ` W )
2 sitmval.1
 |-  ( ph -> W e. V )
3 sitmval.2
 |-  ( ph -> M e. U. ran measures )
4 sitmfval.1
 |-  ( ph -> F e. dom ( W sitg M ) )
5 sitmfval.2
 |-  ( ph -> G e. dom ( W sitg M ) )
6 1 2 3 sitmval
 |-  ( ph -> ( W sitm M ) = ( f e. dom ( W sitg M ) , g e. dom ( W sitg M ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF D g ) ) ) )
7 simprl
 |-  ( ( ph /\ ( f = F /\ g = G ) ) -> f = F )
8 simprr
 |-  ( ( ph /\ ( f = F /\ g = G ) ) -> g = G )
9 7 8 oveq12d
 |-  ( ( ph /\ ( f = F /\ g = G ) ) -> ( f oF D g ) = ( F oF D G ) )
10 9 fveq2d
 |-  ( ( ph /\ ( f = F /\ g = G ) ) -> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF D g ) ) = ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( F oF D G ) ) )
11 fvexd
 |-  ( ph -> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( F oF D G ) ) e. _V )
12 6 10 4 5 11 ovmpod
 |-  ( ph -> ( F ( W sitm M ) G ) = ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( F oF D G ) ) )