| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sitmval.d |  |-  D = ( dist ` W ) | 
						
							| 2 |  | sitmval.1 |  |-  ( ph -> W e. V ) | 
						
							| 3 |  | sitmval.2 |  |-  ( ph -> M e. U. ran measures ) | 
						
							| 4 |  | sitmfval.1 |  |-  ( ph -> F e. dom ( W sitg M ) ) | 
						
							| 5 |  | sitmfval.2 |  |-  ( ph -> G e. dom ( W sitg M ) ) | 
						
							| 6 | 1 2 3 | sitmval |  |-  ( ph -> ( W sitm M ) = ( f e. dom ( W sitg M ) , g e. dom ( W sitg M ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF D g ) ) ) ) | 
						
							| 7 |  | simprl |  |-  ( ( ph /\ ( f = F /\ g = G ) ) -> f = F ) | 
						
							| 8 |  | simprr |  |-  ( ( ph /\ ( f = F /\ g = G ) ) -> g = G ) | 
						
							| 9 | 7 8 | oveq12d |  |-  ( ( ph /\ ( f = F /\ g = G ) ) -> ( f oF D g ) = ( F oF D G ) ) | 
						
							| 10 | 9 | fveq2d |  |-  ( ( ph /\ ( f = F /\ g = G ) ) -> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF D g ) ) = ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( F oF D G ) ) ) | 
						
							| 11 |  | fvexd |  |-  ( ph -> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( F oF D G ) ) e. _V ) | 
						
							| 12 | 6 10 4 5 11 | ovmpod |  |-  ( ph -> ( F ( W sitm M ) G ) = ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( F oF D G ) ) ) |