| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sitmval.d |
|- D = ( dist ` W ) |
| 2 |
|
sitmval.1 |
|- ( ph -> W e. V ) |
| 3 |
|
sitmval.2 |
|- ( ph -> M e. U. ran measures ) |
| 4 |
|
sitmfval.1 |
|- ( ph -> F e. dom ( W sitg M ) ) |
| 5 |
|
sitmfval.2 |
|- ( ph -> G e. dom ( W sitg M ) ) |
| 6 |
1 2 3
|
sitmval |
|- ( ph -> ( W sitm M ) = ( f e. dom ( W sitg M ) , g e. dom ( W sitg M ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF D g ) ) ) ) |
| 7 |
|
simprl |
|- ( ( ph /\ ( f = F /\ g = G ) ) -> f = F ) |
| 8 |
|
simprr |
|- ( ( ph /\ ( f = F /\ g = G ) ) -> g = G ) |
| 9 |
7 8
|
oveq12d |
|- ( ( ph /\ ( f = F /\ g = G ) ) -> ( f oF D g ) = ( F oF D G ) ) |
| 10 |
9
|
fveq2d |
|- ( ( ph /\ ( f = F /\ g = G ) ) -> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF D g ) ) = ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( F oF D G ) ) ) |
| 11 |
|
fvexd |
|- ( ph -> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( F oF D G ) ) e. _V ) |
| 12 |
6 10 4 5 11
|
ovmpod |
|- ( ph -> ( F ( W sitm M ) G ) = ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( F oF D G ) ) ) |