Metamath Proof Explorer


Theorem sitmfval

Description: Value of the integral distance between two simple functions. (Contributed by Thierry Arnoux, 30-Jan-2018)

Ref Expression
Hypotheses sitmval.d D = dist W
sitmval.1 φ W V
sitmval.2 φ M ran measures
sitmfval.1 φ F M W
sitmfval.2 φ G M W
Assertion sitmfval φ |G - F| M W = 𝑠 * 𝑠 0 +∞ F D f G dM

Proof

Step Hyp Ref Expression
1 sitmval.d D = dist W
2 sitmval.1 φ W V
3 sitmval.2 φ M ran measures
4 sitmfval.1 φ F M W
5 sitmfval.2 φ G M W
6 1 2 3 sitmval φ W sitm M = f M W , g M W 𝑠 * 𝑠 0 +∞ f D f g dM
7 simprl φ f = F g = G f = F
8 simprr φ f = F g = G g = G
9 7 8 oveq12d φ f = F g = G f D f g = F D f G
10 9 fveq2d φ f = F g = G 𝑠 * 𝑠 0 +∞ f D f g dM = 𝑠 * 𝑠 0 +∞ F D f G dM
11 fvexd φ 𝑠 * 𝑠 0 +∞ F D f G dM V
12 6 10 4 5 11 ovmpod φ |G - F| M W = 𝑠 * 𝑠 0 +∞ F D f G dM