Metamath Proof Explorer


Theorem sitmval

Description: Value of the simple function integral metric for a given space W and measure M . (Contributed by Thierry Arnoux, 30-Jan-2018)

Ref Expression
Hypotheses sitmval.d D = dist W
sitmval.1 φ W V
sitmval.2 φ M ran measures
Assertion sitmval φ W sitm M = f M W , g M W 𝑠 * 𝑠 0 +∞ f D f g dM

Proof

Step Hyp Ref Expression
1 sitmval.d D = dist W
2 sitmval.1 φ W V
3 sitmval.2 φ M ran measures
4 elex W V W V
5 2 4 syl φ W V
6 oveq1 w = W w sitg m = W sitg m
7 6 dmeqd w = W m w = m W
8 fveq2 w = W dist w = dist W
9 8 ofeqd w = W f dist w = f dist W
10 9 oveqd w = W f dist w f g = f dist W f g
11 10 fveq2d w = W 𝑠 * 𝑠 0 +∞ f dist w f g dm = 𝑠 * 𝑠 0 +∞ f dist W f g dm
12 7 7 11 mpoeq123dv w = W f m w , g m w 𝑠 * 𝑠 0 +∞ f dist w f g dm = f m W , g m W 𝑠 * 𝑠 0 +∞ f dist W f g dm
13 oveq2 m = M W sitg m = W sitg M
14 13 dmeqd m = M m W = M W
15 oveq2 m = M 𝑠 * 𝑠 0 +∞ sitg m = 𝑠 * 𝑠 0 +∞ sitg M
16 1 eqcomi dist W = D
17 ofeq dist W = D f dist W = f D
18 16 17 mp1i m = M f dist W = f D
19 18 oveqd m = M f dist W f g = f D f g
20 15 19 fveq12d m = M 𝑠 * 𝑠 0 +∞ f dist W f g dm = 𝑠 * 𝑠 0 +∞ f D f g dM
21 14 14 20 mpoeq123dv m = M f m W , g m W 𝑠 * 𝑠 0 +∞ f dist W f g dm = f M W , g M W 𝑠 * 𝑠 0 +∞ f D f g dM
22 df-sitm sitm = w V , m ran measures f m w , g m w 𝑠 * 𝑠 0 +∞ f dist w f g dm
23 ovex W sitg M V
24 23 dmex M W V
25 24 24 mpoex f M W , g M W 𝑠 * 𝑠 0 +∞ f D f g dM V
26 12 21 22 25 ovmpo W V M ran measures W sitm M = f M W , g M W 𝑠 * 𝑠 0 +∞ f D f g dM
27 5 3 26 syl2anc φ W sitm M = f M W , g M W 𝑠 * 𝑠 0 +∞ f D f g dM