| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sitmval.d |  |-  D = ( dist ` W ) | 
						
							| 2 |  | sitmval.1 |  |-  ( ph -> W e. V ) | 
						
							| 3 |  | sitmval.2 |  |-  ( ph -> M e. U. ran measures ) | 
						
							| 4 |  | elex |  |-  ( W e. V -> W e. _V ) | 
						
							| 5 | 2 4 | syl |  |-  ( ph -> W e. _V ) | 
						
							| 6 |  | oveq1 |  |-  ( w = W -> ( w sitg m ) = ( W sitg m ) ) | 
						
							| 7 | 6 | dmeqd |  |-  ( w = W -> dom ( w sitg m ) = dom ( W sitg m ) ) | 
						
							| 8 |  | fveq2 |  |-  ( w = W -> ( dist ` w ) = ( dist ` W ) ) | 
						
							| 9 | 8 | ofeqd |  |-  ( w = W -> oF ( dist ` w ) = oF ( dist ` W ) ) | 
						
							| 10 | 9 | oveqd |  |-  ( w = W -> ( f oF ( dist ` w ) g ) = ( f oF ( dist ` W ) g ) ) | 
						
							| 11 | 10 | fveq2d |  |-  ( w = W -> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) ` ( f oF ( dist ` w ) g ) ) = ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) ` ( f oF ( dist ` W ) g ) ) ) | 
						
							| 12 | 7 7 11 | mpoeq123dv |  |-  ( w = W -> ( f e. dom ( w sitg m ) , g e. dom ( w sitg m ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) ` ( f oF ( dist ` w ) g ) ) ) = ( f e. dom ( W sitg m ) , g e. dom ( W sitg m ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) ` ( f oF ( dist ` W ) g ) ) ) ) | 
						
							| 13 |  | oveq2 |  |-  ( m = M -> ( W sitg m ) = ( W sitg M ) ) | 
						
							| 14 | 13 | dmeqd |  |-  ( m = M -> dom ( W sitg m ) = dom ( W sitg M ) ) | 
						
							| 15 |  | oveq2 |  |-  ( m = M -> ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) = ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ) | 
						
							| 16 | 1 | eqcomi |  |-  ( dist ` W ) = D | 
						
							| 17 |  | ofeq |  |-  ( ( dist ` W ) = D -> oF ( dist ` W ) = oF D ) | 
						
							| 18 | 16 17 | mp1i |  |-  ( m = M -> oF ( dist ` W ) = oF D ) | 
						
							| 19 | 18 | oveqd |  |-  ( m = M -> ( f oF ( dist ` W ) g ) = ( f oF D g ) ) | 
						
							| 20 | 15 19 | fveq12d |  |-  ( m = M -> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) ` ( f oF ( dist ` W ) g ) ) = ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF D g ) ) ) | 
						
							| 21 | 14 14 20 | mpoeq123dv |  |-  ( m = M -> ( f e. dom ( W sitg m ) , g e. dom ( W sitg m ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) ` ( f oF ( dist ` W ) g ) ) ) = ( f e. dom ( W sitg M ) , g e. dom ( W sitg M ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF D g ) ) ) ) | 
						
							| 22 |  | df-sitm |  |-  sitm = ( w e. _V , m e. U. ran measures |-> ( f e. dom ( w sitg m ) , g e. dom ( w sitg m ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) ` ( f oF ( dist ` w ) g ) ) ) ) | 
						
							| 23 |  | ovex |  |-  ( W sitg M ) e. _V | 
						
							| 24 | 23 | dmex |  |-  dom ( W sitg M ) e. _V | 
						
							| 25 | 24 24 | mpoex |  |-  ( f e. dom ( W sitg M ) , g e. dom ( W sitg M ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF D g ) ) ) e. _V | 
						
							| 26 | 12 21 22 25 | ovmpo |  |-  ( ( W e. _V /\ M e. U. ran measures ) -> ( W sitm M ) = ( f e. dom ( W sitg M ) , g e. dom ( W sitg M ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF D g ) ) ) ) | 
						
							| 27 | 5 3 26 | syl2anc |  |-  ( ph -> ( W sitm M ) = ( f e. dom ( W sitg M ) , g e. dom ( W sitg M ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF D g ) ) ) ) |