Step |
Hyp |
Ref |
Expression |
1 |
|
sitmval.d |
|- D = ( dist ` W ) |
2 |
|
sitmval.1 |
|- ( ph -> W e. V ) |
3 |
|
sitmval.2 |
|- ( ph -> M e. U. ran measures ) |
4 |
|
elex |
|- ( W e. V -> W e. _V ) |
5 |
2 4
|
syl |
|- ( ph -> W e. _V ) |
6 |
|
oveq1 |
|- ( w = W -> ( w sitg m ) = ( W sitg m ) ) |
7 |
6
|
dmeqd |
|- ( w = W -> dom ( w sitg m ) = dom ( W sitg m ) ) |
8 |
|
fveq2 |
|- ( w = W -> ( dist ` w ) = ( dist ` W ) ) |
9 |
8
|
ofeqd |
|- ( w = W -> oF ( dist ` w ) = oF ( dist ` W ) ) |
10 |
9
|
oveqd |
|- ( w = W -> ( f oF ( dist ` w ) g ) = ( f oF ( dist ` W ) g ) ) |
11 |
10
|
fveq2d |
|- ( w = W -> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) ` ( f oF ( dist ` w ) g ) ) = ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) ` ( f oF ( dist ` W ) g ) ) ) |
12 |
7 7 11
|
mpoeq123dv |
|- ( w = W -> ( f e. dom ( w sitg m ) , g e. dom ( w sitg m ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) ` ( f oF ( dist ` w ) g ) ) ) = ( f e. dom ( W sitg m ) , g e. dom ( W sitg m ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) ` ( f oF ( dist ` W ) g ) ) ) ) |
13 |
|
oveq2 |
|- ( m = M -> ( W sitg m ) = ( W sitg M ) ) |
14 |
13
|
dmeqd |
|- ( m = M -> dom ( W sitg m ) = dom ( W sitg M ) ) |
15 |
|
oveq2 |
|- ( m = M -> ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) = ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ) |
16 |
1
|
eqcomi |
|- ( dist ` W ) = D |
17 |
|
ofeq |
|- ( ( dist ` W ) = D -> oF ( dist ` W ) = oF D ) |
18 |
16 17
|
mp1i |
|- ( m = M -> oF ( dist ` W ) = oF D ) |
19 |
18
|
oveqd |
|- ( m = M -> ( f oF ( dist ` W ) g ) = ( f oF D g ) ) |
20 |
15 19
|
fveq12d |
|- ( m = M -> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) ` ( f oF ( dist ` W ) g ) ) = ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF D g ) ) ) |
21 |
14 14 20
|
mpoeq123dv |
|- ( m = M -> ( f e. dom ( W sitg m ) , g e. dom ( W sitg m ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) ` ( f oF ( dist ` W ) g ) ) ) = ( f e. dom ( W sitg M ) , g e. dom ( W sitg M ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF D g ) ) ) ) |
22 |
|
df-sitm |
|- sitm = ( w e. _V , m e. U. ran measures |-> ( f e. dom ( w sitg m ) , g e. dom ( w sitg m ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) ` ( f oF ( dist ` w ) g ) ) ) ) |
23 |
|
ovex |
|- ( W sitg M ) e. _V |
24 |
23
|
dmex |
|- dom ( W sitg M ) e. _V |
25 |
24 24
|
mpoex |
|- ( f e. dom ( W sitg M ) , g e. dom ( W sitg M ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF D g ) ) ) e. _V |
26 |
12 21 22 25
|
ovmpo |
|- ( ( W e. _V /\ M e. U. ran measures ) -> ( W sitm M ) = ( f e. dom ( W sitg M ) , g e. dom ( W sitg M ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF D g ) ) ) ) |
27 |
5 3 26
|
syl2anc |
|- ( ph -> ( W sitm M ) = ( f e. dom ( W sitg M ) , g e. dom ( W sitg M ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg M ) ` ( f oF D g ) ) ) ) |