Step |
Hyp |
Ref |
Expression |
1 |
|
sitmval.d |
⊢ 𝐷 = ( dist ‘ 𝑊 ) |
2 |
|
sitmval.1 |
⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) |
3 |
|
sitmval.2 |
⊢ ( 𝜑 → 𝑀 ∈ ∪ ran measures ) |
4 |
|
elex |
⊢ ( 𝑊 ∈ 𝑉 → 𝑊 ∈ V ) |
5 |
2 4
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ V ) |
6 |
|
oveq1 |
⊢ ( 𝑤 = 𝑊 → ( 𝑤 sitg 𝑚 ) = ( 𝑊 sitg 𝑚 ) ) |
7 |
6
|
dmeqd |
⊢ ( 𝑤 = 𝑊 → dom ( 𝑤 sitg 𝑚 ) = dom ( 𝑊 sitg 𝑚 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( dist ‘ 𝑤 ) = ( dist ‘ 𝑊 ) ) |
9 |
8
|
ofeqd |
⊢ ( 𝑤 = 𝑊 → ∘f ( dist ‘ 𝑤 ) = ∘f ( dist ‘ 𝑊 ) ) |
10 |
9
|
oveqd |
⊢ ( 𝑤 = 𝑊 → ( 𝑓 ∘f ( dist ‘ 𝑤 ) 𝑔 ) = ( 𝑓 ∘f ( dist ‘ 𝑊 ) 𝑔 ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝑤 = 𝑊 → ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑚 ) ‘ ( 𝑓 ∘f ( dist ‘ 𝑤 ) 𝑔 ) ) = ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑚 ) ‘ ( 𝑓 ∘f ( dist ‘ 𝑊 ) 𝑔 ) ) ) |
12 |
7 7 11
|
mpoeq123dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑓 ∈ dom ( 𝑤 sitg 𝑚 ) , 𝑔 ∈ dom ( 𝑤 sitg 𝑚 ) ↦ ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑚 ) ‘ ( 𝑓 ∘f ( dist ‘ 𝑤 ) 𝑔 ) ) ) = ( 𝑓 ∈ dom ( 𝑊 sitg 𝑚 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑚 ) ↦ ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑚 ) ‘ ( 𝑓 ∘f ( dist ‘ 𝑊 ) 𝑔 ) ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑚 = 𝑀 → ( 𝑊 sitg 𝑚 ) = ( 𝑊 sitg 𝑀 ) ) |
14 |
13
|
dmeqd |
⊢ ( 𝑚 = 𝑀 → dom ( 𝑊 sitg 𝑚 ) = dom ( 𝑊 sitg 𝑀 ) ) |
15 |
|
oveq2 |
⊢ ( 𝑚 = 𝑀 → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑚 ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑀 ) ) |
16 |
1
|
eqcomi |
⊢ ( dist ‘ 𝑊 ) = 𝐷 |
17 |
|
ofeq |
⊢ ( ( dist ‘ 𝑊 ) = 𝐷 → ∘f ( dist ‘ 𝑊 ) = ∘f 𝐷 ) |
18 |
16 17
|
mp1i |
⊢ ( 𝑚 = 𝑀 → ∘f ( dist ‘ 𝑊 ) = ∘f 𝐷 ) |
19 |
18
|
oveqd |
⊢ ( 𝑚 = 𝑀 → ( 𝑓 ∘f ( dist ‘ 𝑊 ) 𝑔 ) = ( 𝑓 ∘f 𝐷 𝑔 ) ) |
20 |
15 19
|
fveq12d |
⊢ ( 𝑚 = 𝑀 → ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑚 ) ‘ ( 𝑓 ∘f ( dist ‘ 𝑊 ) 𝑔 ) ) = ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓 ∘f 𝐷 𝑔 ) ) ) |
21 |
14 14 20
|
mpoeq123dv |
⊢ ( 𝑚 = 𝑀 → ( 𝑓 ∈ dom ( 𝑊 sitg 𝑚 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑚 ) ↦ ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑚 ) ‘ ( 𝑓 ∘f ( dist ‘ 𝑊 ) 𝑔 ) ) ) = ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ↦ ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓 ∘f 𝐷 𝑔 ) ) ) ) |
22 |
|
df-sitm |
⊢ sitm = ( 𝑤 ∈ V , 𝑚 ∈ ∪ ran measures ↦ ( 𝑓 ∈ dom ( 𝑤 sitg 𝑚 ) , 𝑔 ∈ dom ( 𝑤 sitg 𝑚 ) ↦ ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑚 ) ‘ ( 𝑓 ∘f ( dist ‘ 𝑤 ) 𝑔 ) ) ) ) |
23 |
|
ovex |
⊢ ( 𝑊 sitg 𝑀 ) ∈ V |
24 |
23
|
dmex |
⊢ dom ( 𝑊 sitg 𝑀 ) ∈ V |
25 |
24 24
|
mpoex |
⊢ ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ↦ ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓 ∘f 𝐷 𝑔 ) ) ) ∈ V |
26 |
12 21 22 25
|
ovmpo |
⊢ ( ( 𝑊 ∈ V ∧ 𝑀 ∈ ∪ ran measures ) → ( 𝑊 sitm 𝑀 ) = ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ↦ ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓 ∘f 𝐷 𝑔 ) ) ) ) |
27 |
5 3 26
|
syl2anc |
⊢ ( 𝜑 → ( 𝑊 sitm 𝑀 ) = ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ↦ ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓 ∘f 𝐷 𝑔 ) ) ) ) |