Metamath Proof Explorer


Theorem sitmval

Description: Value of the simple function integral metric for a given space W and measure M . (Contributed by Thierry Arnoux, 30-Jan-2018)

Ref Expression
Hypotheses sitmval.d 𝐷 = ( dist ‘ 𝑊 )
sitmval.1 ( 𝜑𝑊𝑉 )
sitmval.2 ( 𝜑𝑀 ran measures )
Assertion sitmval ( 𝜑 → ( 𝑊 sitm 𝑀 ) = ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ↦ ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓f 𝐷 𝑔 ) ) ) )

Proof

Step Hyp Ref Expression
1 sitmval.d 𝐷 = ( dist ‘ 𝑊 )
2 sitmval.1 ( 𝜑𝑊𝑉 )
3 sitmval.2 ( 𝜑𝑀 ran measures )
4 elex ( 𝑊𝑉𝑊 ∈ V )
5 2 4 syl ( 𝜑𝑊 ∈ V )
6 oveq1 ( 𝑤 = 𝑊 → ( 𝑤 sitg 𝑚 ) = ( 𝑊 sitg 𝑚 ) )
7 6 dmeqd ( 𝑤 = 𝑊 → dom ( 𝑤 sitg 𝑚 ) = dom ( 𝑊 sitg 𝑚 ) )
8 fveq2 ( 𝑤 = 𝑊 → ( dist ‘ 𝑤 ) = ( dist ‘ 𝑊 ) )
9 ofeq ( ( dist ‘ 𝑤 ) = ( dist ‘ 𝑊 ) → ∘f ( dist ‘ 𝑤 ) = ∘f ( dist ‘ 𝑊 ) )
10 8 9 syl ( 𝑤 = 𝑊 → ∘f ( dist ‘ 𝑤 ) = ∘f ( dist ‘ 𝑊 ) )
11 10 oveqd ( 𝑤 = 𝑊 → ( 𝑓f ( dist ‘ 𝑤 ) 𝑔 ) = ( 𝑓f ( dist ‘ 𝑊 ) 𝑔 ) )
12 11 fveq2d ( 𝑤 = 𝑊 → ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑚 ) ‘ ( 𝑓f ( dist ‘ 𝑤 ) 𝑔 ) ) = ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑚 ) ‘ ( 𝑓f ( dist ‘ 𝑊 ) 𝑔 ) ) )
13 7 7 12 mpoeq123dv ( 𝑤 = 𝑊 → ( 𝑓 ∈ dom ( 𝑤 sitg 𝑚 ) , 𝑔 ∈ dom ( 𝑤 sitg 𝑚 ) ↦ ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑚 ) ‘ ( 𝑓f ( dist ‘ 𝑤 ) 𝑔 ) ) ) = ( 𝑓 ∈ dom ( 𝑊 sitg 𝑚 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑚 ) ↦ ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑚 ) ‘ ( 𝑓f ( dist ‘ 𝑊 ) 𝑔 ) ) ) )
14 oveq2 ( 𝑚 = 𝑀 → ( 𝑊 sitg 𝑚 ) = ( 𝑊 sitg 𝑀 ) )
15 14 dmeqd ( 𝑚 = 𝑀 → dom ( 𝑊 sitg 𝑚 ) = dom ( 𝑊 sitg 𝑀 ) )
16 oveq2 ( 𝑚 = 𝑀 → ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑚 ) = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑀 ) )
17 1 eqcomi ( dist ‘ 𝑊 ) = 𝐷
18 ofeq ( ( dist ‘ 𝑊 ) = 𝐷 → ∘f ( dist ‘ 𝑊 ) = ∘f 𝐷 )
19 17 18 mp1i ( 𝑚 = 𝑀 → ∘f ( dist ‘ 𝑊 ) = ∘f 𝐷 )
20 19 oveqd ( 𝑚 = 𝑀 → ( 𝑓f ( dist ‘ 𝑊 ) 𝑔 ) = ( 𝑓f 𝐷 𝑔 ) )
21 16 20 fveq12d ( 𝑚 = 𝑀 → ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑚 ) ‘ ( 𝑓f ( dist ‘ 𝑊 ) 𝑔 ) ) = ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓f 𝐷 𝑔 ) ) )
22 15 15 21 mpoeq123dv ( 𝑚 = 𝑀 → ( 𝑓 ∈ dom ( 𝑊 sitg 𝑚 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑚 ) ↦ ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑚 ) ‘ ( 𝑓f ( dist ‘ 𝑊 ) 𝑔 ) ) ) = ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ↦ ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓f 𝐷 𝑔 ) ) ) )
23 df-sitm sitm = ( 𝑤 ∈ V , 𝑚 ran measures ↦ ( 𝑓 ∈ dom ( 𝑤 sitg 𝑚 ) , 𝑔 ∈ dom ( 𝑤 sitg 𝑚 ) ↦ ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑚 ) ‘ ( 𝑓f ( dist ‘ 𝑤 ) 𝑔 ) ) ) )
24 ovex ( 𝑊 sitg 𝑀 ) ∈ V
25 24 dmex dom ( 𝑊 sitg 𝑀 ) ∈ V
26 25 25 mpoex ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ↦ ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓f 𝐷 𝑔 ) ) ) ∈ V
27 13 22 23 26 ovmpo ( ( 𝑊 ∈ V ∧ 𝑀 ran measures ) → ( 𝑊 sitm 𝑀 ) = ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ↦ ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓f 𝐷 𝑔 ) ) ) )
28 5 3 27 syl2anc ( 𝜑 → ( 𝑊 sitm 𝑀 ) = ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ↦ ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓f 𝐷 𝑔 ) ) ) )