| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sitmval.d | ⊢ 𝐷  =  ( dist ‘ 𝑊 ) | 
						
							| 2 |  | sitmval.1 | ⊢ ( 𝜑  →  𝑊  ∈  𝑉 ) | 
						
							| 3 |  | sitmval.2 | ⊢ ( 𝜑  →  𝑀  ∈  ∪  ran  measures ) | 
						
							| 4 |  | elex | ⊢ ( 𝑊  ∈  𝑉  →  𝑊  ∈  V ) | 
						
							| 5 | 2 4 | syl | ⊢ ( 𝜑  →  𝑊  ∈  V ) | 
						
							| 6 |  | oveq1 | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤 sitg 𝑚 )  =  ( 𝑊 sitg 𝑚 ) ) | 
						
							| 7 | 6 | dmeqd | ⊢ ( 𝑤  =  𝑊  →  dom  ( 𝑤 sitg 𝑚 )  =  dom  ( 𝑊 sitg 𝑚 ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( dist ‘ 𝑤 )  =  ( dist ‘ 𝑊 ) ) | 
						
							| 9 | 8 | ofeqd | ⊢ ( 𝑤  =  𝑊  →   ∘f  ( dist ‘ 𝑤 )  =   ∘f  ( dist ‘ 𝑊 ) ) | 
						
							| 10 | 9 | oveqd | ⊢ ( 𝑤  =  𝑊  →  ( 𝑓  ∘f  ( dist ‘ 𝑤 ) 𝑔 )  =  ( 𝑓  ∘f  ( dist ‘ 𝑊 ) 𝑔 ) ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝑤  =  𝑊  →  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑚 ) ‘ ( 𝑓  ∘f  ( dist ‘ 𝑤 ) 𝑔 ) )  =  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑚 ) ‘ ( 𝑓  ∘f  ( dist ‘ 𝑊 ) 𝑔 ) ) ) | 
						
							| 12 | 7 7 11 | mpoeq123dv | ⊢ ( 𝑤  =  𝑊  →  ( 𝑓  ∈  dom  ( 𝑤 sitg 𝑚 ) ,  𝑔  ∈  dom  ( 𝑤 sitg 𝑚 )  ↦  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑚 ) ‘ ( 𝑓  ∘f  ( dist ‘ 𝑤 ) 𝑔 ) ) )  =  ( 𝑓  ∈  dom  ( 𝑊 sitg 𝑚 ) ,  𝑔  ∈  dom  ( 𝑊 sitg 𝑚 )  ↦  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑚 ) ‘ ( 𝑓  ∘f  ( dist ‘ 𝑊 ) 𝑔 ) ) ) ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑚  =  𝑀  →  ( 𝑊 sitg 𝑚 )  =  ( 𝑊 sitg 𝑀 ) ) | 
						
							| 14 | 13 | dmeqd | ⊢ ( 𝑚  =  𝑀  →  dom  ( 𝑊 sitg 𝑚 )  =  dom  ( 𝑊 sitg 𝑀 ) ) | 
						
							| 15 |  | oveq2 | ⊢ ( 𝑚  =  𝑀  →  ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑚 )  =  ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑀 ) ) | 
						
							| 16 | 1 | eqcomi | ⊢ ( dist ‘ 𝑊 )  =  𝐷 | 
						
							| 17 |  | ofeq | ⊢ ( ( dist ‘ 𝑊 )  =  𝐷  →   ∘f  ( dist ‘ 𝑊 )  =   ∘f  𝐷 ) | 
						
							| 18 | 16 17 | mp1i | ⊢ ( 𝑚  =  𝑀  →   ∘f  ( dist ‘ 𝑊 )  =   ∘f  𝐷 ) | 
						
							| 19 | 18 | oveqd | ⊢ ( 𝑚  =  𝑀  →  ( 𝑓  ∘f  ( dist ‘ 𝑊 ) 𝑔 )  =  ( 𝑓  ∘f  𝐷 𝑔 ) ) | 
						
							| 20 | 15 19 | fveq12d | ⊢ ( 𝑚  =  𝑀  →  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑚 ) ‘ ( 𝑓  ∘f  ( dist ‘ 𝑊 ) 𝑔 ) )  =  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓  ∘f  𝐷 𝑔 ) ) ) | 
						
							| 21 | 14 14 20 | mpoeq123dv | ⊢ ( 𝑚  =  𝑀  →  ( 𝑓  ∈  dom  ( 𝑊 sitg 𝑚 ) ,  𝑔  ∈  dom  ( 𝑊 sitg 𝑚 )  ↦  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑚 ) ‘ ( 𝑓  ∘f  ( dist ‘ 𝑊 ) 𝑔 ) ) )  =  ( 𝑓  ∈  dom  ( 𝑊 sitg 𝑀 ) ,  𝑔  ∈  dom  ( 𝑊 sitg 𝑀 )  ↦  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓  ∘f  𝐷 𝑔 ) ) ) ) | 
						
							| 22 |  | df-sitm | ⊢ sitm  =  ( 𝑤  ∈  V ,  𝑚  ∈  ∪  ran  measures  ↦  ( 𝑓  ∈  dom  ( 𝑤 sitg 𝑚 ) ,  𝑔  ∈  dom  ( 𝑤 sitg 𝑚 )  ↦  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑚 ) ‘ ( 𝑓  ∘f  ( dist ‘ 𝑤 ) 𝑔 ) ) ) ) | 
						
							| 23 |  | ovex | ⊢ ( 𝑊 sitg 𝑀 )  ∈  V | 
						
							| 24 | 23 | dmex | ⊢ dom  ( 𝑊 sitg 𝑀 )  ∈  V | 
						
							| 25 | 24 24 | mpoex | ⊢ ( 𝑓  ∈  dom  ( 𝑊 sitg 𝑀 ) ,  𝑔  ∈  dom  ( 𝑊 sitg 𝑀 )  ↦  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓  ∘f  𝐷 𝑔 ) ) )  ∈  V | 
						
							| 26 | 12 21 22 25 | ovmpo | ⊢ ( ( 𝑊  ∈  V  ∧  𝑀  ∈  ∪  ran  measures )  →  ( 𝑊 sitm 𝑀 )  =  ( 𝑓  ∈  dom  ( 𝑊 sitg 𝑀 ) ,  𝑔  ∈  dom  ( 𝑊 sitg 𝑀 )  ↦  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓  ∘f  𝐷 𝑔 ) ) ) ) | 
						
							| 27 | 5 3 26 | syl2anc | ⊢ ( 𝜑  →  ( 𝑊 sitm 𝑀 )  =  ( 𝑓  ∈  dom  ( 𝑊 sitg 𝑀 ) ,  𝑔  ∈  dom  ( 𝑊 sitg 𝑀 )  ↦  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓  ∘f  𝐷 𝑔 ) ) ) ) |