| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sitmval.d |
⊢ 𝐷 = ( dist ‘ 𝑊 ) |
| 2 |
|
sitmval.1 |
⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) |
| 3 |
|
sitmval.2 |
⊢ ( 𝜑 → 𝑀 ∈ ∪ ran measures ) |
| 4 |
|
sitmfval.1 |
⊢ ( 𝜑 → 𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) ) |
| 5 |
|
sitmfval.2 |
⊢ ( 𝜑 → 𝐺 ∈ dom ( 𝑊 sitg 𝑀 ) ) |
| 6 |
1 2 3
|
sitmval |
⊢ ( 𝜑 → ( 𝑊 sitm 𝑀 ) = ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ↦ ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓 ∘f 𝐷 𝑔 ) ) ) ) |
| 7 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) ) → 𝑓 = 𝐹 ) |
| 8 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) ) → 𝑔 = 𝐺 ) |
| 9 |
7 8
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) ) → ( 𝑓 ∘f 𝐷 𝑔 ) = ( 𝐹 ∘f 𝐷 𝐺 ) ) |
| 10 |
9
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) ) → ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓 ∘f 𝐷 𝑔 ) ) = ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝐹 ∘f 𝐷 𝐺 ) ) ) |
| 11 |
|
fvexd |
⊢ ( 𝜑 → ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝐹 ∘f 𝐷 𝐺 ) ) ∈ V ) |
| 12 |
6 10 4 5 11
|
ovmpod |
⊢ ( 𝜑 → ( 𝐹 ( 𝑊 sitm 𝑀 ) 𝐺 ) = ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝐹 ∘f 𝐷 𝐺 ) ) ) |