| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sitmval.d | ⊢ 𝐷  =  ( dist ‘ 𝑊 ) | 
						
							| 2 |  | sitmval.1 | ⊢ ( 𝜑  →  𝑊  ∈  𝑉 ) | 
						
							| 3 |  | sitmval.2 | ⊢ ( 𝜑  →  𝑀  ∈  ∪  ran  measures ) | 
						
							| 4 |  | sitmfval.1 | ⊢ ( 𝜑  →  𝐹  ∈  dom  ( 𝑊 sitg 𝑀 ) ) | 
						
							| 5 |  | sitmfval.2 | ⊢ ( 𝜑  →  𝐺  ∈  dom  ( 𝑊 sitg 𝑀 ) ) | 
						
							| 6 | 1 2 3 | sitmval | ⊢ ( 𝜑  →  ( 𝑊 sitm 𝑀 )  =  ( 𝑓  ∈  dom  ( 𝑊 sitg 𝑀 ) ,  𝑔  ∈  dom  ( 𝑊 sitg 𝑀 )  ↦  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓  ∘f  𝐷 𝑔 ) ) ) ) | 
						
							| 7 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 ) )  →  𝑓  =  𝐹 ) | 
						
							| 8 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 ) )  →  𝑔  =  𝐺 ) | 
						
							| 9 | 7 8 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 ) )  →  ( 𝑓  ∘f  𝐷 𝑔 )  =  ( 𝐹  ∘f  𝐷 𝐺 ) ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 ) )  →  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓  ∘f  𝐷 𝑔 ) )  =  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝐹  ∘f  𝐷 𝐺 ) ) ) | 
						
							| 11 |  | fvexd | ⊢ ( 𝜑  →  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝐹  ∘f  𝐷 𝐺 ) )  ∈  V ) | 
						
							| 12 | 6 10 4 5 11 | ovmpod | ⊢ ( 𝜑  →  ( 𝐹 ( 𝑊 sitm 𝑀 ) 𝐺 )  =  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝐹  ∘f  𝐷 𝐺 ) ) ) |