Metamath Proof Explorer


Theorem sitmfval

Description: Value of the integral distance between two simple functions. (Contributed by Thierry Arnoux, 30-Jan-2018)

Ref Expression
Hypotheses sitmval.d 𝐷 = ( dist ‘ 𝑊 )
sitmval.1 ( 𝜑𝑊𝑉 )
sitmval.2 ( 𝜑𝑀 ran measures )
sitmfval.1 ( 𝜑𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) )
sitmfval.2 ( 𝜑𝐺 ∈ dom ( 𝑊 sitg 𝑀 ) )
Assertion sitmfval ( 𝜑 → ( 𝐹 ( 𝑊 sitm 𝑀 ) 𝐺 ) = ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝐹f 𝐷 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 sitmval.d 𝐷 = ( dist ‘ 𝑊 )
2 sitmval.1 ( 𝜑𝑊𝑉 )
3 sitmval.2 ( 𝜑𝑀 ran measures )
4 sitmfval.1 ( 𝜑𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) )
5 sitmfval.2 ( 𝜑𝐺 ∈ dom ( 𝑊 sitg 𝑀 ) )
6 1 2 3 sitmval ( 𝜑 → ( 𝑊 sitm 𝑀 ) = ( 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) , 𝑔 ∈ dom ( 𝑊 sitg 𝑀 ) ↦ ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓f 𝐷 𝑔 ) ) ) )
7 simprl ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑔 = 𝐺 ) ) → 𝑓 = 𝐹 )
8 simprr ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑔 = 𝐺 ) ) → 𝑔 = 𝐺 )
9 7 8 oveq12d ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑔 = 𝐺 ) ) → ( 𝑓f 𝐷 𝑔 ) = ( 𝐹f 𝐷 𝐺 ) )
10 9 fveq2d ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑔 = 𝐺 ) ) → ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝑓f 𝐷 𝑔 ) ) = ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝐹f 𝐷 𝐺 ) ) )
11 fvexd ( 𝜑 → ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝐹f 𝐷 𝐺 ) ) ∈ V )
12 6 10 4 5 11 ovmpod ( 𝜑 → ( 𝐹 ( 𝑊 sitm 𝑀 ) 𝐺 ) = ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝐹f 𝐷 𝐺 ) ) )