Step |
Hyp |
Ref |
Expression |
1 |
|
sitmcl.0 |
⊢ ( 𝜑 → 𝑊 ∈ Mnd ) |
2 |
|
sitmcl.1 |
⊢ ( 𝜑 → 𝑊 ∈ ∞MetSp ) |
3 |
|
sitmcl.2 |
⊢ ( 𝜑 → 𝑀 ∈ ∪ ran measures ) |
4 |
|
sitmcl.3 |
⊢ ( 𝜑 → 𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) ) |
5 |
|
sitmcl.4 |
⊢ ( 𝜑 → 𝐺 ∈ dom ( 𝑊 sitg 𝑀 ) ) |
6 |
|
eqid |
⊢ ( dist ‘ 𝑊 ) = ( dist ‘ 𝑊 ) |
7 |
6 2 3 4 5
|
sitmfval |
⊢ ( 𝜑 → ( 𝐹 ( 𝑊 sitm 𝑀 ) 𝐺 ) = ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝐹 ∘f ( dist ‘ 𝑊 ) 𝐺 ) ) ) |
8 |
|
xrge0base |
⊢ ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
9 |
|
xrge0topn |
⊢ ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) |
10 |
9
|
eqcomi |
⊢ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) = ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
11 |
|
eqid |
⊢ ( sigaGen ‘ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) = ( sigaGen ‘ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) |
12 |
|
xrge00 |
⊢ 0 = ( 0g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
13 |
|
ovex |
⊢ ( 0 [,] +∞ ) ∈ V |
14 |
|
eqid |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) |
15 |
|
ax-xrsvsca |
⊢ ·e = ( ·𝑠 ‘ ℝ*𝑠 ) |
16 |
14 15
|
ressvsca |
⊢ ( ( 0 [,] +∞ ) ∈ V → ·e = ( ·𝑠 ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ) |
17 |
13 16
|
ax-mp |
⊢ ·e = ( ·𝑠 ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
18 |
|
ax-xrssca |
⊢ ℝfld = ( Scalar ‘ ℝ*𝑠 ) |
19 |
14 18
|
resssca |
⊢ ( ( 0 [,] +∞ ) ∈ V → ℝfld = ( Scalar ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ) |
20 |
13 19
|
ax-mp |
⊢ ℝfld = ( Scalar ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
21 |
20
|
fveq2i |
⊢ ( ℝHom ‘ ℝfld ) = ( ℝHom ‘ ( Scalar ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ) |
22 |
|
ovexd |
⊢ ( 𝜑 → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ V ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
24 |
|
eqid |
⊢ ( TopOpen ‘ 𝑊 ) = ( TopOpen ‘ 𝑊 ) |
25 |
|
eqid |
⊢ ( sigaGen ‘ ( TopOpen ‘ 𝑊 ) ) = ( sigaGen ‘ ( TopOpen ‘ 𝑊 ) ) |
26 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
27 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
28 |
|
eqid |
⊢ ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) |
29 |
23 24 25 26 27 28 2 3 4
|
sibff |
⊢ ( 𝜑 → 𝐹 : ∪ dom 𝑀 ⟶ ∪ ( TopOpen ‘ 𝑊 ) ) |
30 |
|
xmstps |
⊢ ( 𝑊 ∈ ∞MetSp → 𝑊 ∈ TopSp ) |
31 |
23 24
|
tpsuni |
⊢ ( 𝑊 ∈ TopSp → ( Base ‘ 𝑊 ) = ∪ ( TopOpen ‘ 𝑊 ) ) |
32 |
2 30 31
|
3syl |
⊢ ( 𝜑 → ( Base ‘ 𝑊 ) = ∪ ( TopOpen ‘ 𝑊 ) ) |
33 |
|
feq3 |
⊢ ( ( Base ‘ 𝑊 ) = ∪ ( TopOpen ‘ 𝑊 ) → ( 𝐹 : ∪ dom 𝑀 ⟶ ( Base ‘ 𝑊 ) ↔ 𝐹 : ∪ dom 𝑀 ⟶ ∪ ( TopOpen ‘ 𝑊 ) ) ) |
34 |
32 33
|
syl |
⊢ ( 𝜑 → ( 𝐹 : ∪ dom 𝑀 ⟶ ( Base ‘ 𝑊 ) ↔ 𝐹 : ∪ dom 𝑀 ⟶ ∪ ( TopOpen ‘ 𝑊 ) ) ) |
35 |
29 34
|
mpbird |
⊢ ( 𝜑 → 𝐹 : ∪ dom 𝑀 ⟶ ( Base ‘ 𝑊 ) ) |
36 |
23 24 25 26 27 28 2 3 5
|
sibff |
⊢ ( 𝜑 → 𝐺 : ∪ dom 𝑀 ⟶ ∪ ( TopOpen ‘ 𝑊 ) ) |
37 |
|
feq3 |
⊢ ( ( Base ‘ 𝑊 ) = ∪ ( TopOpen ‘ 𝑊 ) → ( 𝐺 : ∪ dom 𝑀 ⟶ ( Base ‘ 𝑊 ) ↔ 𝐺 : ∪ dom 𝑀 ⟶ ∪ ( TopOpen ‘ 𝑊 ) ) ) |
38 |
32 37
|
syl |
⊢ ( 𝜑 → ( 𝐺 : ∪ dom 𝑀 ⟶ ( Base ‘ 𝑊 ) ↔ 𝐺 : ∪ dom 𝑀 ⟶ ∪ ( TopOpen ‘ 𝑊 ) ) ) |
39 |
36 38
|
mpbird |
⊢ ( 𝜑 → 𝐺 : ∪ dom 𝑀 ⟶ ( Base ‘ 𝑊 ) ) |
40 |
|
dmexg |
⊢ ( 𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ V ) |
41 |
|
uniexg |
⊢ ( dom 𝑀 ∈ V → ∪ dom 𝑀 ∈ V ) |
42 |
3 40 41
|
3syl |
⊢ ( 𝜑 → ∪ dom 𝑀 ∈ V ) |
43 |
35 39 42
|
ofresid |
⊢ ( 𝜑 → ( 𝐹 ∘f ( dist ‘ 𝑊 ) 𝐺 ) = ( 𝐹 ∘f ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝐺 ) ) |
44 |
2 30
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ TopSp ) |
45 |
|
eqid |
⊢ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) = ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) |
46 |
23 45
|
xmsxmet |
⊢ ( 𝑊 ∈ ∞MetSp → ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑊 ) ) ) |
47 |
|
xmetpsmet |
⊢ ( ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑊 ) ) → ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( PsMet ‘ ( Base ‘ 𝑊 ) ) ) |
48 |
2 46 47
|
3syl |
⊢ ( 𝜑 → ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( PsMet ‘ ( Base ‘ 𝑊 ) ) ) |
49 |
|
psmetxrge0 |
⊢ ( ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( PsMet ‘ ( Base ‘ 𝑊 ) ) → ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) : ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ⟶ ( 0 [,] +∞ ) ) |
50 |
48 49
|
syl |
⊢ ( 𝜑 → ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) : ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ⟶ ( 0 [,] +∞ ) ) |
51 |
|
xrge0tps |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopSp |
52 |
51
|
a1i |
⊢ ( 𝜑 → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopSp ) |
53 |
24 23 45
|
xmstopn |
⊢ ( 𝑊 ∈ ∞MetSp → ( TopOpen ‘ 𝑊 ) = ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) |
54 |
2 53
|
syl |
⊢ ( 𝜑 → ( TopOpen ‘ 𝑊 ) = ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) |
55 |
|
eqid |
⊢ ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) |
56 |
55
|
methaus |
⊢ ( ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑊 ) ) → ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ∈ Haus ) |
57 |
2 46 56
|
3syl |
⊢ ( 𝜑 → ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ∈ Haus ) |
58 |
54 57
|
eqeltrd |
⊢ ( 𝜑 → ( TopOpen ‘ 𝑊 ) ∈ Haus ) |
59 |
|
haust1 |
⊢ ( ( TopOpen ‘ 𝑊 ) ∈ Haus → ( TopOpen ‘ 𝑊 ) ∈ Fre ) |
60 |
58 59
|
syl |
⊢ ( 𝜑 → ( TopOpen ‘ 𝑊 ) ∈ Fre ) |
61 |
2 46
|
syl |
⊢ ( 𝜑 → ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑊 ) ) ) |
62 |
23 26
|
mndidcl |
⊢ ( 𝑊 ∈ Mnd → ( 0g ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
63 |
1 62
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
64 |
|
xmet0 |
⊢ ( ( ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑊 ) ) ∧ ( 0g ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) → ( ( 0g ‘ 𝑊 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 0g ‘ 𝑊 ) ) = 0 ) |
65 |
61 63 64
|
syl2anc |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑊 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 0g ‘ 𝑊 ) ) = 0 ) |
66 |
65 12
|
eqtrdi |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑊 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 0g ‘ 𝑊 ) ) = ( 0g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ) |
67 |
23 24 25 26 27 28 2 3 4 8 44 50 5 52 60 66
|
sibfof |
⊢ ( 𝜑 → ( 𝐹 ∘f ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝐺 ) ∈ dom ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑀 ) ) |
68 |
43 67
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ∘f ( dist ‘ 𝑊 ) 𝐺 ) ∈ dom ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑀 ) ) |
69 |
|
rebase |
⊢ ℝ = ( Base ‘ ℝfld ) |
70 |
69 69
|
xpeq12i |
⊢ ( ℝ × ℝ ) = ( ( Base ‘ ℝfld ) × ( Base ‘ ℝfld ) ) |
71 |
70
|
reseq2i |
⊢ ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) = ( ( dist ‘ ℝfld ) ↾ ( ( Base ‘ ℝfld ) × ( Base ‘ ℝfld ) ) ) |
72 |
|
xrge0cmn |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd |
73 |
72
|
a1i |
⊢ ( 𝜑 → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd ) |
74 |
|
rerrext |
⊢ ℝfld ∈ ℝExt |
75 |
20 74
|
eqeltrri |
⊢ ( Scalar ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ∈ ℝExt |
76 |
75
|
a1i |
⊢ ( 𝜑 → ( Scalar ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ∈ ℝExt ) |
77 |
|
rrhre |
⊢ ( ℝHom ‘ ℝfld ) = ( I ↾ ℝ ) |
78 |
77
|
imaeq1i |
⊢ ( ( ℝHom ‘ ℝfld ) “ ( 0 [,) +∞ ) ) = ( ( I ↾ ℝ ) “ ( 0 [,) +∞ ) ) |
79 |
|
0re |
⊢ 0 ∈ ℝ |
80 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
81 |
|
icossre |
⊢ ( ( 0 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 0 [,) +∞ ) ⊆ ℝ ) |
82 |
79 80 81
|
mp2an |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
83 |
|
resiima |
⊢ ( ( 0 [,) +∞ ) ⊆ ℝ → ( ( I ↾ ℝ ) “ ( 0 [,) +∞ ) ) = ( 0 [,) +∞ ) ) |
84 |
82 83
|
ax-mp |
⊢ ( ( I ↾ ℝ ) “ ( 0 [,) +∞ ) ) = ( 0 [,) +∞ ) |
85 |
78 84
|
eqtri |
⊢ ( ( ℝHom ‘ ℝfld ) “ ( 0 [,) +∞ ) ) = ( 0 [,) +∞ ) |
86 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
87 |
85 86
|
eqsstri |
⊢ ( ( ℝHom ‘ ℝfld ) “ ( 0 [,) +∞ ) ) ⊆ ( 0 [,] +∞ ) |
88 |
87
|
sseli |
⊢ ( 𝑚 ∈ ( ( ℝHom ‘ ℝfld ) “ ( 0 [,) +∞ ) ) → 𝑚 ∈ ( 0 [,] +∞ ) ) |
89 |
88
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ℝHom ‘ ℝfld ) “ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → 𝑚 ∈ ( 0 [,] +∞ ) ) |
90 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ℝHom ‘ ℝfld ) “ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → 𝑥 ∈ ( 0 [,] +∞ ) ) |
91 |
|
ge0xmulcl |
⊢ ( ( 𝑚 ∈ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → ( 𝑚 ·e 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
92 |
89 90 91
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ℝHom ‘ ℝfld ) “ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → ( 𝑚 ·e 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
93 |
8 10 11 12 17 21 22 3 68 20 71 52 73 76 92
|
sitgclg |
⊢ ( 𝜑 → ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) sitg 𝑀 ) ‘ ( 𝐹 ∘f ( dist ‘ 𝑊 ) 𝐺 ) ) ∈ ( 0 [,] +∞ ) ) |
94 |
7 93
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ( 𝑊 sitm 𝑀 ) 𝐺 ) ∈ ( 0 [,] +∞ ) ) |